Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/120763
Título: | Effective Electrical Properties and Fault Diagnosis of Insulating Oil Using the 2D Cell Method and NSGA-II Genetic Algorithm | Autores/as: | Monzón Verona, José Miguel González Domínguez, Pablo Garcia-Alonso Montoya, Santiago |
Clasificación UNESCO: | 3325 Tecnología de las telecomunicaciones 330790 Microelectrónica |
Palabras clave: | Fault diagnosis Electrical insulating oil Effective electrical properties Wireless sensors Genetic algorithms, et al. |
Fecha de publicación: | 2023 | Publicación seriada: | Sensors (Switzerland) | Resumen: | In this paper, an experimental analysis of the quality of electrical insulating oils is performed using a combination of dielectric loss and capacitance measurement tests. The transformer oil corresponds to a fresh oil sample. The paper follows the ASTM D 924-15 standard (standard test method for dissipation factor and relative permittivity of electrical insulating liquids). Effective electrical parameters, including the tan δ of the oil, were obtained in this non-destructive test. Subsequently, a numerical method is proposed to accurately determine the effective electrical resistivity, σ, and effective electrical permittivity, ε, of an insulating mineral oil from the data obtained in the experimental analysis. These two parameters are not obtained in the ASTM standard. We used the cell method and the multi-objective non-dominated sorting in genetic algorithm II (NSGA-II) for this purpose. In this paper, a new numerical tool to accurately obtain the effective electrical parameters of transformer insulating oils is therefore provided for fault detection and diagnosis. The results show improved accuracy compared to the existing analytical equations. In addition, as the experimental data are collected in a high-voltage domain, wireless sensors are used to measure, transmit, and monitor the electrical and thermal quantities. | URI: | http://hdl.handle.net/10553/120763 | ISSN: | 1424-8220 | DOI: | 10.3390/s23031685 | Fuente: | Sensors (Switzerland) [ISSN 1424-8220], v. 23 (3), 1685, (Febrero 2023) |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 17-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
50
actualizado el 27-abr-2024
Descargas
10
actualizado el 27-abr-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.