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Abstract: In this paper, an experimental analysis of the quality of electrical insulating oils is per-
formed using a combination of dielectric loss and capacitance measurement tests. The transformer
oil corresponds to a fresh oil sample. The paper follows the ASTM D 924-15 standard (standard
test method for dissipation factor and relative permittivity of electrical insulating liquids). Effective
electrical parameters, including the tan δ of the oil, were obtained in this non-destructive test. Subse-
quently, a numerical method is proposed to accurately determine the effective electrical resistivity,
σ, and effective electrical permittivity, ε, of an insulating mineral oil from the data obtained in the
experimental analysis. These two parameters are not obtained in the ASTM standard. We used the
cell method and the multi-objective non-dominated sorting in genetic algorithm II (NSGA-II) for this
purpose. In this paper, a new numerical tool to accurately obtain the effective electrical parameters of
transformer insulating oils is therefore provided for fault detection and diagnosis. The results show
improved accuracy compared to the existing analytical equations. In addition, as the experimental
data are collected in a high-voltage domain, wireless sensors are used to measure, transmit, and
monitor the electrical and thermal quantities.

Keywords: fault diagnosis; electrical insulating oil; effective electrical properties; wireless sensors;
genetic algorithms; cell method

1. Introduction

The increasing demand for electric power in the world—electricity consumption
increased by 129.6% between 1990 and 2021 [1]—brings with it a greater need for reliable
power equipment, such as transformers or on-load tap changers, among many others. In
addition, as a result of the rapid increase in power transmission voltage, the performance
requirements for power transformer insulation are also increasing [2].

Power transformers constitute the highest equipment cost in electrical substations,
accounting for almost 60% of the total investment [3]. The threshold temperature for
transformer operation is 80 ◦C. Above this temperature, transformer lifetime is halved for
each temperature increase between 6 and 7 ◦C [4].

In transformers, high amounts of dielectric liquids are used for phase-to-phase/phase-
to-ground insulation practices, as well as cooling liquid to evacuate heat generated due
to hysteresis and eddy current losses in iron, as well as the losses due to the Joule effect
in the transformer coils. Various insulating liquids with different chemical, physical, and
dielectric properties are used in electrical installations to provide continuous operations.
However, it is well known that some of the electrical faults occurring in power equipment
arise from the deterioration of these dielectric liquids [5].
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The regular and trouble-free operation of these components is vital to ensure a con-
tinuous energy supply and economic profitability of the power system. A power outage
resulting from transformer failure, which is one of the costliest and most important parts
of an electric power system, could lead to production interruption and considerable eco-
nomic losses.

It is also of the utmost importance to ensure an adequate level of environmental safety,
given that during their operation the stresses that high-voltage devices and, consequently,
insulating materials operate under can be critical [6].

A set of techniques for the monitoring and diagnosis of faults that affect the life cycle
of these important elements is required. These techniques include the following: dissolved
gas analysis, oil quality testing, infrared thermography testing, power factor test, tan delta
testing, and insulating oil breakdown testing, among others.

The optimization algorithm that is developed in this work allows for the determination
of effective electrical permittivity and conductivity properties, ε and σ, on the basis of the
global data obtained in the tan delta test and a distributed parameter model.

The analytical equations presented in [5] are only an approximation, since they do not
take into account the geometry of the test device container (TDC) and assume, beforehand,
a known value of the electrical permittivity of the TDC without oil.

The knowledge of these dielectric properties allows for the planning of preventive
maintenance to avoid future transformer breakdowns in power systems [2], and can be used
to perform a finite element numerical analysis to determine the electrical field distribution
results for AC breakdown strength testing [7]. Activation energy, Eac, [8], is an indicator
that can be used to determine properties, such as electrical conductivity, as a function of
temperature. In [9], the Eac profiles of a nanostructured alumina polycarbonate composite
for the improvement of electrical insulation conditions in materials were evaluated. The
insulation system in a transformer degrades over time and needs periodic monitoring
for the uninterrupted operation of a power system network. A non-intrusive and non-
destructive testing method using an S-band pyramidal horn antenna is introduced in [10].

The timely identification of the aging stage of the transformer can effectively ensure
its safe operation and prevent aging faults [11].

In this paper, a non-destructive testing (NDT) analysis of the quality of electrical
insulating oils is performed using a combination of dielectric loss and capacitance mea-
surement tests. The transformer oil corresponds to a fresh oil sample. The article follows
the ASTM D 924-15 [12] standard (standard test method for dissipation factor and relative
permittivity of electrical insulating liquids). The IEC 60,247 standard [13] is equivalent to
ASTM D 924-15. Effective electrical parameters, such as the tan δ of the oil, are obtained.

Subsequently, a numerical method is proposed to accurately determine the effective
electrical resistivity, σ, and effective electrical permittivity, ε, of an insulating mineral oil
from the data obtained in the experimental analysis. The cell method (CM) and non-
dominated sorting in genetic algorithm II (NSGA-II), a multi-objective genetic algorithm,
are used. Therefore, in this paper, a new numerical tool to accurately obtain the effective
electrical parameters of transformer insulating oils is provided for fault detection and
diagnosis. The distributed parameter model and GA-based algorithm are used with the
aim of improving accuracy compared to existing analytical equations that are used. As
the experimental data are collected in a high-voltage domain, wireless sensors are used to
measure, transmit, and monitor the electrical and thermal magnitudes.

The optimization algorithm used in this paper to determine the effective electrical
parameters can be classified as a metaheuristic algorithm. Such algorithms are used to
solve complex problems in various fields of electrical engineering. Intensification and diver-
sification are their key elements. Most of these metaheuristic algorithms are inspired by the
process of biological evolution. Of these, the genetic algorithm (GA) is the best known [14].

The multi-objective GA (MOGA) is a modified version of the simple GA. The MOGA
differs from the GA in terms of the objective function assignment, but its other steps are
similar to those of the GA. The main feature of the MOGA is to generate the Pareto optimal
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front in the objective space such that one objective function is not improved by worsening
the other objective functions [14]. The concept of Pareto dominance was introduced in the
MOGA in [15], the paper in which the first MOGA was developed.

Proposed in [16], the NSGA-II is an improved version of the NSGA and is a widely
used algorithm. It uses a selection scheme in which the population of parents is com-
pared with the population of offspring. The NSGA-II, in addition to the use of elitism,
is more computationally efficient than the NSGA. It is a highly competitive algorithm in
convergence to the Pareto optimum.

GAs have been used previously to detect incipient transformer oil faults [17], while
GA-based predictive models have been used as an auxiliary indicator method to determine
the aging condition of transformer polymer insulation [18]. In [19], a GA was used for
accurate measurements of partial discharge. The use of GAs in design is well known. In [20],
a GA was used with the finite element method for the design of transformers. In [21], a
new multi-objective optimization tool was provided for the design of low-power-pressure
microsensors using NSGA-II.

However, in the literature, to the authors’ knowledge, the two-dimensional cell method
(2D-CM) has not been used together with the NSGA-II and ASTM D 924-15 to determine
accurate measurements for the ε and σ of an insulating mineral oil.

This paper is divided into the following sections. In Section 2, “Theoretical back-
ground”, the TDC is described, and the distributed and lumped parameter models are
developed. In Section 3, “Non-destructive insulation tests”, the electrical connection scheme
is presented, the Schering bridge used for the experimental measurements is described,
the high-voltage tests are presented, and the parameters used in the following section
are obtained. In Section 4, a description is provided of the fit of the effective oil parame-
ters by means of the 2D-CM and NSGA-II. Finally, in Section 5, “Conclusions”, the main
conclusions obtained are presented.

2. Theoretical Background

A standard TDC, described in detail in Section 2.1, was used to conduct the experi-
mental analysis of the quality of electrical insulating oils.

The effective electrical properties of mineral oil (σ and ε) were obtained based on
two types of models. The first was the distributed parameter model of the TDC, which is
developed in Section 2.2. The finite formulation (FF) of the electromagnetic equations [22,23]
was used, along with the numerical CM to solve these equations [24,25].

The second model was the TDC lumped parameter model, developed in Section 2.3.
This model was necessary to be able to relate the experimental measurements performed in
the high-voltage laboratory (global magnitudes of electric potential difference and intensity
of electric current) with the magnitudes of the distributed parameter model used by the
CM (distributed electric potentials throughout the TDC domain).

2.1. Test Device Container

The TDC is composed of stainless steel and conforms to the ASTM D 924-15 standard.
It is shaped similar to a cylindrical capacitor with an external and internal cylindrical
plate. The external plate constitutes the container in which the oil is housed. The inner
plate is submerged in the oil and rests on the external plate through a circular transparent
methacrylate lid. The inner plate is connected to a high voltage through an upper handle.
Figure 1 shows a schematic diagram of the two elements that comprise the TDC.

In summary, the two main elements of the TDC are the oil container, which, during
the tests, is connected to the ground, and an inner cylindrical plate, which is connected to a
high voltage, with its methacrylate cover and ring.

The TDC for liquid insulants (max. 10 kV) that was used was a Haefely Hipotronics
6835 test cell [24,26]. It allows tests on the dielectric properties of liquid insulants and
can be used to determine the dissipation factor (tan δ). It is particularly suitable for on-
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site maintenance measurements on the insulating oil of electrical apparatus, including
transformers and oil circuit-breakers. Its main properties are presented in Table 1.
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Table 1. Properties of the Haefely Hipotronics 6835 TDC.

Property Value

Empty capacitance About 109 pF

Radial electrode spacing 6.7 mm

Quantity of liquid About 1050 cm3

Max. test voltage 10 kV, 50/60 Hz

Dimensions Ø 178 × H 190 mm

2.2. Distributed Parameter Model

For transformer oils, the electrical constitutive equation is a complex equation based on
the Fower–Nordheim theory [27]. In most dielectric materials, the free-carrier conduction
current is relatively low since their conductivity is usually several orders of magnitude
below that of a metal or semiconductor. In new transformer oils, at 50 ◦C it is usually
around 1 × 10−13 S/m and in used oils in the order of 1 × 10−11 S/m. This is because oil
conductivity mainly depends on the conductive particles inside it [5].

The oil electrical permittivity is ε = εr × 8.854187818 × 10−12 F/m, with the oil relative
permittivity, εr, being between 2 and 4 [5]. A higher relative permittivity value for an
insulating liquid indicates that it is less exposed to electric field stresses. This condition
is an advantage for the quality of the insulation. In addition, the higher permittivity of
mineral oil is better at building a more uniform electric field.

In this paper, a conductive model was considered, in which the volumetric current

density
→
J was directly proportional to the electric field

→
E [27].

Using the FF and CM as the numerical methods, the equation to solve the quasi-
electrostatic problem is the following:

D̃MσGϕ +
∂

∂t
D̃MεGϕ = 0 (1)

where D̃ is the volumes–faces incidence matrix in the dual mesh. This matrix represents
the discrete divergence associated with the dual volume. D̃ = −Gt is met with matrix Mσ

being the electrical constitutive matrix. Matrix Mε is the constitutive matrix of electrical
permittivity and G is the edges–nodes incidence matrix in the primal mesh. In the primal
mesh, the electrical potentials of the nodes are in the vector ϕ.
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If the electrodes work at the frequency f = 50 Hz (with the angular frequency ω = 2πf ),
then Equation (1) is reduced to Equation (2) in the frequency domain. In this equation,
σ and ε appear simultaneously. This is the equation that must be programmed together with
the global electrode complex current vector It, which is calculated by Equation (3), where
Ic is an incidence vector of the relative cut between the edges of the mesh of the oil volume
and the surface of one of the TDC cylindrical plates [25,28]. The sum of all the currents in
that cut is equal to the total current that enters or leaves each of the TDC electrodes.

D̃MσGϕ + jωD̃MεGϕ = 0 (2)

It = −Ic (MσG + jωMεG)ϕ (3)

The unknowns are all the complex electrical potentials ϕ associated with the nodes of
the primal mesh.

In addition to the optimization algorithm, which is presented in Section 4, the global
magnitudes are needed to determine the effective parameters σ and ε. They are obtained in
the post-processing stage, once Equation (2) has been solved.

The first of these is the current, It, associated with the surface of the electrodes, as
described in Equation (3).

Associated with the entire domain, the second global magnitude is the average
electrical energy stored over time (rms value) in the oil, We, according to the following
equation [29]:

We =
∫

vol

1
4

EεE∗dv (4)

where E and E∗ are, respectively, the complex electric field and its conjugate in the whole
domain.

The third global magnitude corresponds to the total losses due to the Joule effect
averaged over time (rms value) in the oil, PJoule. They are given by:

PJoule =
∫

vol

1
2

EσE∗dv (5)

where σ and ε are analytically related [5] through the following equation:

tan δ =
σ

ωε
(6)

where tan δ is the loss factor.
Figure 2a shows the external cylindrical plate and Figure 2b the mesh generated with

Gmsh software [30]. In this region, all the nodes of the conducting region were set at zero
potential as the boundary condition.

Figure 3a shows the inner cylindrical plate which, in the numerical simulations, is
connected to a high voltage. This electric potential corresponds to each of the electric
potentials used in the experiments conducted in the laboratory. The boundary condition
corresponding to this region is to set all the nodes of the conducting region at a high voltage.

All equations were programmed in C++. Equation (2) is symmetric. As the matrices
are sparse and large, numerical methods based on the Krylov subspaces were used. These
algorithms were implemented with the PETSc numerical package [31]. This numerical
package uses parallel processing, which reduces the calculation times. In particular, the
linear solver used was the generalized minimal residual (GMRES) algorithm.

The main characteristics of the computer used in the simulations were as follows:
computer model = X399 AORUS PRO; architecture = x86_64; total memory = 128 GB;
processors = 24; CPU = 2185.498 MHz; threads per core = 2; and cores per socket = 12.

To verify the CM model expressed with Equation (2), a simulation was performed
with the TDC without oil (Figure 4). The result obtained was compared with the value
provided by the manufacturer and was observed to coincide.
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The intensity of the electric field was the negative gradient of the electric potential,
which was obtained by solving Equation (2). The intensity of the electric field was used to
calculate the stored energy and heat losses, as observed in Equations (4) and (5), which were
necessary in the calculation of the effective parameters, σ and ε, as explained in Section 4.1.

Figure 4b shows the distribution of the electric field intensity module corresponding
to one of the optimization experiments conducted (AG3 in Section 4.1). The values of
electrical conductivity and relative permittivity of this distribution were 20.7 pS/m and
2.11, respectively.

To reduce the simulation time in the optimization process, the axial symmetry of
the problem was used. This benefitted the calculation process due to the high number
of simulations conducted in the process of searching for effective properties. For this
simulation, Figure 5a shows the distribution of nodes in the TDC. The number of triangles is
27,842. The number of nodes is only 14,165, in a cross-section, compared to the 20,269 nodes
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of the 3D mesh in the whole volume. The size of the tetrahedra is much larger than the size
of the triangles (see Figure 5b).
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Figure 5. Comparison of 2D versus 3D meshing. (a) Two-dimensional mesh. Number of nodes:
14,165. Number of triangles: 27,842. (b) Three-dimensional mesh. Number of nodes: 20,269. Number
of tetrahedra: 108,154.

With 2D meshing and axial symmetry, a much higher meshing density is achieved.
Therefore, the results are more precise with the same computational cost.

The capacity of TDC without oil, according to the model of Equation (2) solved by
2D-CM, produces a value of 108.9 pF, which coincides with the value provided by the
manufacturer [24].

As we obtained the capacity of the TDC using CM and the value obtained was equal
to that provided by the manufacturer, we validated the CM numerical model that uses
geometry and physical laws that govern the problem. Therefore, we could apply any
dielectric and any TDC geometry. The proposed method is a general method. It is not a
specific method for a particular TDC.
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2.3. Lumped Parameter Model

In an ideal capacitor, the resistance of the dielectric is infinitely high. This means that,
when an alternating current voltage is applied, the electrical current is exactly a 90 degree
phase shift with the voltage.

Each insulator showed minor loss values under direct current conditions, with a power

PJoule =
U2

Test
Rp

, where UTest=
∣∣UTest

∣∣ is the module of the voltage applied to the TDC and Rp

is the resistance of the parallel equivalent circuit (see Figure 6b). Under AC conditions,
behavior known as dielectric hysteresis loss occurs. Dielectric hysteresis loss is analogous
to the magnetic hysteresis loss in iron. In this case, both magnitudes have a phase shift
different to 90 degrees.
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The method used to estimate dielectric hysteresis loss in this work was an effective
lumped parameter method or circuit model. This model is related to the distributed
parameter method observed in Section 2.2 in which σ and ε are involved. In the lumped
parameter model, tan δ is calculated. This model includes a calculation of the capacitor
Cp, and the effective resistance of total losses Rp (conductive and electrical hysteresis)
(see Figure 6a,b).

Its complex admittance takes the following value:

Yp = Gp + jωCp (7)

where the equivalent conductance Gp = 1/Rp, Cp is the equivalent capacity of the model
and j the imaginary unit. In this way, it can be written as:

It = YpUTest = IRp + ICp = GpUTest + jωCpUTest (8)

Therefore, to identify Yp, it is necessary to know UTest (which is known because it is
the applied voltage). The current It is calculated using Equation (3).

With this value, it is possible to estimate the value of the effective tan δ, which is
as follows:

tan δ =
IRp

ICp
=

σ

ωε
(9)

The tan δ of an insulating material is expressed as the sum of conduction (tan δC),
dielectric hysteresis (tan δH), polarization (tan δP), and ionization (tan δI), as stated in [5]:

tan δ = tan δC + tan δH + tan δP + tan δI (10)
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ASTM D924-15 [10] states that, in general, tanδ values of insulation oils in a good
condition are below 0.005. Some of the tanδ values obtained from the scientific literature
are 0.001 [32], 0.053 [33], and 0.015 [34]. Higher values are found for aged oils.

As seen in Equation (9), there is a direct relationship between tan δ and σ, and an
inverse relationship with ε. This is an approximate analytical equation.

The relationship between the lumped parameters described in this section and the
distributed parameters described in Section 2.2 is expressed by the following equations:

PJoule =
U2

Test
Rp

(11)

We =
1
2

U2
TestCp (12)

where PJoule is the average total thermal loss in the oil over time due to the Joule effect (see
Equation (5)), and We is the average stored electrical energy over time (rms value) in the
oil (see Equation (4)). These two equations, (11) and (12), are used later in the fit of the
effective parameters σ and ε with the GA program.

3. Non-Destructive Insulation Tests

In this section, the non-destructive test ASTM D924-15 is applied. This test establishes
both thermal and electrical conditions for the measurement of these quantities [12]. This
test method describes the test applied to a fresh electrical insulating oil as well as insulating
oil in the service of transformers.

In this test, it must be borne in mind that, when insulating liquids are heated to
elevated temperatures, some of their electrical and thermal characteristics (tanδ, σ, quality
factor, QF, thermal conductivity, among others) undergo a change with time, and the change,
even though of the minutest nature, may be reflected in the measurements. It is therefore
desirable that the elapsed time necessary for the test specimen to attain temperature
equilibrium with the TDC be kept to a minimum.

This section is organized as follows. First, the TDC and the electrical connections made
with the measurement equipment are described; secondly, the Schering bridge method is
explained; and, finally, the high-voltage experiments conducted are described.

3.1. Electrical Connection Diagram

Figure 6a shows a photograph of the TDC used in all the experiments. The high voltage
should be connected to the handle on the inner cylindrical plate. In the measurement
circuit, the V-potential should be connected to the metallic ring (electric guard) on the inner
electrode (see Figure 7a,b).
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The external cylinder should be insulated from the ground and connected to the
measuring bridge. For this purpose, special connection cables were used. A clearance of
several centimeters should be maintained between the HV connection and the metallic
ring, which is connected to the V-potential, so that flashover does not occur between the
HV-potential electrode and the ring.

The test voltage should be raised to under 10 kV. The radial electrode spacing of the
TDC is 6.7 mm. The sample should not break down under this voltage. Before the sample
is tested, its temperature should be measured.

The TDC volume is about 1050 cm3. It should be filled until there is 2 cm of liquid
above the top of the cylinder inside the TDC.

3.2. Schering Bridge

One of the most widely used methods to measure tan δ and Cp, with high precision, is
the high-voltage Schering bridge [35].

The basic circuit layout is shown in Figure 7a. The capacitance Cp and tan δ of a
capacitor, or any capacitance of a sample, is measured by the bridge, comparing it to a
standard capacitor CN . This capacitor has very low losses, almost negligible, over a wide
frequency range. It can be used for test voltages up to megavolts.

The high-voltage Schering bridge (Figure 7a) relies upon the measurement of the
current IN through the known reference capacitor CN = 100 pF (SF6 insulated standard
capacitor) and measurement of the current It through the unknown test object. It contains
the currents ICp and IRp. Comparing both currents, IN and It, the Schering bridge obtains
the desired measurements.

Both branches are energized by an external HV-AC power source UTest. Both currents
are measured by adjustable highly accurate shunts RX and RN , and then digitized. By
using IEEE 1394 “fire wire” data bus technology, each digitized value is time-stamped. With
this technology, not only the values, but also the time information (phase shift) between
IN and It, can be measured very rapidly and with a high degree of accuracy (see Figure 7a).
The connection scheme of the metering equipment is shown in Figure 7b.

Shown below is the calculation of the values of capacity Cp and resistance Rp. The
resitence Rp represents the oil losses. Both values are provided by the measurement system.

Applying Kirchhoff’s second law to the loop formed by the high-voltage source
(HV-AC), the reference capacitor CN = 100 pF, and resistance RN used to measure the
voltage UN , the following equation is obtained:

UTest =

[
−j

CNω
+ RN

]
IN (13)
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In this equation, ω = 2π f , where f = 50 Hz.
The current IN = IN

∣∣∣ϕ1 is defined by its modulus IN and angle ϕ1 taken with respect

to the reference UTest, which is chosen as the phase origin.
The current It = It

∣∣∣ϕX is fully defined in its modulus It and angle ϕX, using the
measurements performed as follows:

It =
UX
RX

(14)

ϕX = ϕ1 + ϕm (15)

where ϕm is the phase shift obtained between the voltages UN and UX , using the measured
times t1 and t2 , in two consecutive homologous instants and provided by the measurement
system (see Figure 7a).

Therefore, applying Kirchhoff’s second law to the loop formed by the source UTest, the
resistance RX, the capacitor Cp, and, considering the oil loss resistance Rp, the following
is obtained:

UTest =

RX +
Rp

−j
Cpω

Rp +
−j

Cpω

It. (16)

From this complex equation, Rp and Cp in the lumped parameter circuit of the TDC
are unequivocally obtained.

3.3. High-Voltage Tests

This section presents the high-voltage laboratory, the connection diagram of the
electrical equipment used in the experimental tests, the measurement procedure, and,
finally, the experimental results obtained.

3.3.1. Laboratory Description

The laboratory had two clearly separated areas. The high-voltage test and control
rooms were where the low-voltage control and measurement equipment was located.

The test equipment, located in the high-voltage room, included a reference capacitor
(Figure 8), transformer (Figure 9), and power supply (Figure 10).
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Figure 10. Power supply for the regulation of the output voltage, from 0 to 230 V.

Located in the control room was the OT 248 system operating terminal control equip-
ment (Figure 11), which controlled the power supply, and the Schering bridge (Figure 12).
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Tettex-Haefely test AG. Schering bridge.
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3.3.2. Diagram of the Connections for the Electrical Test Equipment

The equipment connections were performed as indicated in the ASTM D 924-15
standard [10,12].

The OT 248 unit regulates the input power voltage. The power supply unit supplies to
the system the input power voltage, in a low voltage (see Figure 13). Then, the transformer
raises the single-phase voltage to the desired high voltage, always less than 10 kV, which
is the TDC usage limit. The measuring bridge is connected to the reference capacitor CN,
transformer, and, in turn, to the TDC (Figure 13).
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Figure 13. Electrical equipment connection diagram.

3.3.3. Temperature Measurement and Control Procedure

For safety, the transformer output was initially grounded. At the beginning of the
test, this ground connection was removed. Then, the power supply unit was switched on.
The desired maximum voltage level of 10 kV was specified in the OT 248 unit. Then, for
the data collection with the Schering bridge, the voltage was gradually increased until the
desired voltage was attained.

The studied case began with 3 kV, reaching 8 kV in steps of 1 kV for each temperature.
In the oil, temperatures of 23, 30, 40, 50, and 60 ◦C were successively recorded.

In this section, the control system of the TDC oil temperature is studied. The control
objective was to progressively heat the oil and, subsequently, during the time that the test
lasted, to maintain it a certain constant temperature.

For the reliable performance of dielectric strength tests, the TDC, as a standard device,
cannot be modified. Therefore, it is not possible to immerse a thermometer into the oil
during the test. It was necessary to obtain an indirect measurement of the oil temperature
through four external thermometers placed on the external perimeter of the TDC. For this,
the outer wall of the TDC was covered with neoprene, which served as thermal insulation.

DS18B20 waterproof temperature sensors were used [36]. A diagram of the location
of these thermal sensors is shown in Figure 14. Their unique one-wire interface facilitated
the communication with the devices. The DS18B20 can convert temperature to a 12-bit
digital word in 750 ms, maximum. In addition, the DS18B20 can measure temperatures
from −55 ◦C to +125 ◦C. It does not require an external power supply unit, as it is powered
from the data line. Its stainless-steel probe head makes it suitable for any wet or harsh
environment. Other features include the ranges of power supply from 3.0 to 5.5 V, and
its accuracy (±0.5 ◦C over the range of −10 ◦C to +85 ◦C). The four thermal sensors were
powered by a 3.2 V DC power supply.
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Figure 14. Diagram of the arrangement of resistors and thermometers in the TDC.

The regulation system at present is an on–off controller, which feeds the heating
resistances. If the oil temperature is lower than a certain set value, the electrical circuit is
closed, and the intensity circulates through the four resistances connected in parallel. These
gradually heat the oil until the established set-point is attained, at which point the current
stops circulating.

The four resistances are each 22 Ω rated and are connected in parallel. They are
powered by 20 V DC from an external power supply.

By means of an ESP-32 microcontroller, the temperature of the oil is registered and
controlled. This is possible using the intensity control system of the four resistances. In
addition, through the ESP-32, ambient temperature, relative humidity, and atmospheric
pressure in the high-voltage room are recorded.

The ESP-32 microcontroller, working as a transmitter, is located in the high-voltage
room. It transmits the measured temperature data in real time to the other paired ESP-32
microcontroller, working as a receiver, located in the control room. The two ESP-32 devices
use Wi-Fi technology.

The transmitter and receiver boards are type ESP-32, 38-pin, dual-core, ultra-low-
power, and Wi-Fi and Bluetooth compatible (see Figure 15). The ESP-32s are powered by
AC rechargeable 5 V DC batteries.
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The room temperature, atmospheric pressure, and relative humidity were continuously
monitored through the BME280 (3.3 V) digital sensor (see Figure 15). The average room
temperature recorded during the experimental tests was 23 ◦C, the atmospheric pressure
986 mb, and the relative humidity 55%.

Figure 15 shows the layout of the four TDC temperature sensors, the BME280 digital
sensor, and the microcontroller located in the high-voltage area. In addition, Figure 15
shows the microcontroller, display, and thermal set point regulator in the low-voltage area.

It was observed that the increase in oil temperature was approximately linear with
respect to time. Given that 60 ◦C was attained in 36 min, it can be observed that about
6 min were sufficient to obtain an increase of 10 ◦C.
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The dielectric strength test was performed with temperature jumps of 10 ◦C between
steps. In the first 6 min, the oil temperature increased by 10 ◦C. To ensure a homogenous oil
temperature distribution, we decided to wait an additional 24 min before performing a new
test. During this time, this constant temperature was maintained by the control system,
guaranteeing the homogeneity of the temperature field in the TDC during the 10 min
tests. Schematically, Figure 16 represents the temporary heating process, temperature
homogenization, and tan δ test.
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To verify that the temperature, indirectly measured by external thermometers, which
matched the actual oil temperature, thermographs of the oil surface were taken with an
FLIR E54 camera [37].

These thermographs were taken in tests prior to the high-voltage test. For this purpose,
the TDC cover was removed, allowing the immersion of the DS18B20 digital thermometer
in the oil to provide a direct measurement of the oil’s temperature.

The FLIR E54 thermal camera offers the resolution and sensitivity needed for the basic
monitoring and inspection of electrical/mechanical devices. Its thermal detector accurately
measures temperatures up to 650 ◦C. The FLIR E54 also shows the maximum/minimum
temperatures in an area of its screen.

In infrared mode, its resolution is 320 × 240 pixels. The thermal sensitivity or noise
equivalent temperature difference (NETD) is less than 40 mK at 30 ◦C. The NETD is
equivalent to the smallest difference in temperature that the camera can measure without
being attributed to its own noise. Thermal sensitivity is usually described in ◦C or mK
(thousandths of a Kelvin). High-end thermal-imaging cameras offer sensitivities around
30 mK [38].

The FLIR E54 thermal camera is accurate to ±2 ◦C or ±2% of the reading. It is a 5 MP
digital camera with an integrated 4-inch photo/video LED illumination, 640 × 480 pixels,
and LCD touch screen with auto-rotate and removable SD card as storage media.

Figure 17a shows the thermograph of the oil-filled TDC at 62 ◦C. It can be observed
that the horizontal surface of the oil has an approximately uniform temperature, except in
the vicinity of the electrical resistance that has a slightly higher temperature.
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3.3.4. Test Results

Throughout the experimentation, the ASTM D 924-15 standard [12] was followed. The
parameters obtained in the oil tests were the following (see Figures 6b and 7a):

• Rp = Parallel resistance of the equivalent circuit of lumped parameters.
• Cp = Parallel capacity of the equivalent circuit of lumped parameters.
• I N = Electric current passing through the reference capacitor CN of 100 pF.
• ICp = Electric current passing through the capacitor Cp.
• tan δ = Ratio between the electric current IRp that passes through the resistance Rp and

the current ICp, as defined in Equation (9).
• QF = Quality factor. Ratio between the energy stored in the electric field of the real

capacitor Cp divided by the energy dissipated by the resistance Rp in a period of time
at the operating frequency.

The tan δ and QF values are parameters of great importance as they characterize the
dielectric behavior of the oil. Both allow for the evaluation of the dielectric losses in the
insulation and thus detect, at an early stage, signs of aging in the insulation or accessories,
such as bushings.

Rp and Cp, the resistance and equivalent capacity of the TDC and IN and It, the
Schering measurement bridge currents, allow us to obtain numerically ε and σ. This was
conducted in Section 4.

In the present work, the values of these parameters were determined for voltages
between 3 and 8 kV, applied in successive steps of 1 kV for different temperatures. Temper-
atures of 30, 40, 50, and 60 ◦C were recorded in the oil, in addition to room temperature.

Given the large amount of data recorded, the results are graphically presented in this
paper (Figures 18–23) as opposed to the use of dense numerical tables.
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Figure 18 plots tan δ against test voltage UTest for the five different oil temperatures T.
It can be observed that tan δ increases with UTest and T. This was expected as electrical
losses increase with applied voltage.

Figure 19 plots QF against UTest for the five different T. It can be observed that QF
decreases as UTest and T increase. Therefore, the two plots are consistent, because an
increase in tan δ is detrimental, as is a decrease in QF.

Figure 20 plots IN against UTest for the five different T. It can be observed that IN is
independent of T, since the five curves coincide, and that it varies linearly with UTest.

Figure 21 plots It against UTest for the five different T. It can be observed that It is
independent of T, since the five curves coincide, and that it varies linearly with UTest. The
behavior is similar to that shown by IN .

Figure 22 plots Rp against UTest for the five different T. It can be observed that Rp
decreases as UTest and T increase. This is consistent with what was observed for tan δ, since
Rp decreases, increasing the electrical losses.

The well-known Arrhenius’s equation relates σ to T through the following analytic
equation [5]:

σ(T) =
[

A · exp
(
− Eac

K · T

)]
, (17)

where A is a constant related to ion mobility, Eac is the activation energy, and K is the
Boltzmann constant. Since the electrical resistivity ρ is the inverse of σ, this equation shows
that Rp decreases with increasing temperature, as seen above.

Figure 23 plots Cp against UTest and T. It can be observed that Cp is independent of
UTest and that it decreases with T.

4. Fit of the Effective Parameters Using the CM and NSGA-II

In this section, a numerical method is proposed to accurately determine σ and ε in an
insulating mineral oil from the data obtained in the previous section. The CM and NSGA-II
methods were used.

In Section 4.1, a new numerical tool is provided to accurately obtain the effective
electrical parameters of transformer insulating oils, σ and ε. Its accuracy is improved with
respect to existing analytical equations as a distributed parameter model is used together
with GA-based optimization.

In Section 4.2, the Results and Discussion are presented.

4.1. Methodology

The procedure followed by the NSGA-II algorithm, represented in Figure 24, is sum-
marized below [39]:

• Step 1. An initial random population of size N is generated, respecting the ranges
of the variables. In this particular problem, the physical properties to be determined
(εr − σ) are equivalent to a chromosome. In addition, the values of the objective
functions g1 and g2 are evaluated, which are the errors with respect to a reference of
the experimental values Cp and Rp for that combination of variables.

• Step 2. The initial population is classified based on the values of the objective functions
to generate several non-dominated fronts. Each member of each front is assigned a
fitness value, called a rank.

• Step 3. The crowding distance of each member in each front is calculated. The fronts
are ordered according to their objective values.

• Step 4. According to the range and crowding distance, the main population is ordered
by selecting the nest individuals through a binary tournament competition.

• Step 5. From those selected in the previous step, the original population is crossed and
mutated to generate an offspring population.

• Step 6. The initial population of parents and offspring obtained from Step 5 is com-
bined to generate a population size of 2N. From this last selection, elitism is performed
to select the best population of size N, according to the value of the objective functions.
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• Step 7. The stopping criterion of the iteration in progress is checked, which consists of
verifying if the maximum number of generations has been attained. If this condition is
not reached, steps 2 to 7 are repeated.
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Figure 24. Flow diagram of the determination of the effective electrical parameters σ and εr using
NSGA-II and CM on the basis of the experimental data.

The objective functions used in the NSGA-II model define the error that is produced
when we are searching for the final solutions of the iterative problem, σ and εr. In this way,
we fitted the experimental data obtained in Section 3 to the numerical solutions obtained
through CM.

The paper followed the ASTM D 924-15 standard where effective electrical parameters,
including the tanδ of the oil, were obtained. However, note that tanδ is not used directly in
the numerical model developed in this section to obtain the effective parameters, σ and ε.
The parameters that are directly involved in the model are Rp, the parallel resistance of the
equivalent circuit of lumped parameters, and Cp, the parallel capacity of the equivalent
circuit of lumped parameters.

Figure 24 shows a flow diagram of the iterative global process until the effective
parameters of the dielectric oil, εr and σ, are finally obtained. The flow diagram begins
with the external conditions T and UTest applied to the dielectric. Once the measurements
have been accurately made with the Schering bridge (see Section 3.2), the experimental
parameters Cp

(
T, UTest

)
and Rp

(
T, UTest

)
are obtained. These two values are used as

references in the objective functions g1 and g2:

g1 = ErrorC(%) =
Cp
(
T, UTest

)
− Ci

P

Cp
(
T, UTest

) ∗ 100, (18)

g2 = ErrorR(%) =
Rp
(
T, UTest

)
− Ri

P

Rp
(
T, UTest

) ∗ 100, (19)

where Ci
P y Ri

P are the values obtained in the post-processing stage when Equation (2) is
solved, and which are calculated through Equations (4), (5), (11), and (12).

Note that the objective function g2 is directly linked to σ. This is because σ is the
inverse of ρ, and Rp is directly proportional to ρ.

4.2. Results and Discussion

The experimental input data in the flowchart of Figure 24 were obtained, as described
in Section 3.3, from a total of 30 experiments with five temperatures and six different
voltages (23–60 ◦C and 3–8 kV).

Table 2 summarizes twelve of these numerical optimization experiments, allowing
the visual verification of the proposed method and the results obtained for the effective
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parameters σ and εr. The parameters of the GA common to these calculations are shown in
Table 3.

Table 2. Summary of calculations obtained by NSGA-II.

Experiment
Name

Number of Objective Functions
and Method

Number
of Generations

UTest
(kV)

T
(◦C) εr

σ
(pS/m)

GA1 2-PF 20 4.96 60 2.10 42.3

GA2 2-PF 20 8.05 60 2.10 52.3

GA3 2-PF 20 3.00 50 2.11 20.7

GA4 2-PF 20 6.01 50 2.11 36.3

GA5 2-PF 20 3.96 40 2.12 20.6

GA6 2-PF 20 8.11 40 2.12 32.4

GA7 2-PF 20 2.96 30 2.13 7.2

GA8 2-PF 20 8.04 30 2.13 26.7

GA9 2-PF 20 5.17 23 2.14 18.6

GA10 2-PF 20 6.02 23 2.14 21.2

GA11 2-PF 100 4.96 60 2.10 42.3

GA12 1-WS 100 4.96 60 2.10 42.3

Table 3. Execution parameters of genetic algorithms.

Parameter Value

Population size 40

Number of real variables 2

Lower limit of real variable 1 [σ] 0.152 pS/m

Upper limit of real variable 1 [σ] 80.0 pS/m

Lower limit of real variable 2 [εr] 1.0

Upper limit of real variable 2 [εr] 4.0

Probability of crossover of real variable 0.9

Probability of mutation of real variable 0.5

Seed for random number generator 0.5

Number of crossovers of real variable 1796 for 100 generations

Number of mutations of real variable 3923 for 100 generations

Execution time 56 min 47 s for 100 generations

C and C++ were used as the programming language. The source code of each program
for the MOGA was obtained from the Kanpur Genetic Algorithms Laboratory [40]. The
authors of the present paper developed the program for the solution of Equation (2) in C++.

A real codification was chosen for each chromosome (εr − σ). In general, the precision
is better than binary codification. It can be improved by adding more bits, but this increases
the simulation time [19,21]. As the variable of the parameter space of an optimization
problem is continuous, a real coded GA is possibly preferred [41].

As previously mentioned, the results of 12 of the 30 experiments are presented, named
GA1 to GA12. They have in common the parameters in Table 3 and differ, as indicated in
Table 2, in terms of the number of objective functions used: either one function using the
weighted sum (WS) method, or two functions using the method based on the concept of
the Pareto front (PF).
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The PF method is based on minimizing two error functions, g1 and g2. The WS method
minimizes a single average function:

gSP =
1
2
(ErrorC(%) + ErrorR(%)). (20)

The number of generations performed in the majority of the calculations was 20.
However, in the GA11 and GA12 calculations, the number of generations was increased to
100 in order to verify the convergence of the results.

In step 1, an initial random population of size N equal to 40 individuals was generated.
The execution time was approximately 56 min for 100 generations. In this problem, each
individual of the population was equivalent to a chromosome, which was constituted by
the union of the physical properties to be determined, εr and σ [21].

For the codification of the chromosome, the algorithm needs to know the minimum
and maximum intervals of these variables. For σ, which is part of the chromosome, the
values considered are a lower limit of 0.15 pS/m, which is a very low value, and an upper
limit of 80 pS/m, which is a very high value. All the experiments conducted were between
those two limits. In the same way, the lower and upper limits of εr were 1 and 4, respectively.
One corresponds to the air and four is the maximum value observed in the literature.

Figure 25 shows the distribution of results for the 20 generations and a population of
40 individuals corresponding to the GAI experiment (Table 2). In Figure 25a, εr is plotted
against the error ErrorC(%) for all generations. Likewise, the optimal value is represented,
which is 2.1, for εr, with an error close to 0.
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Figure 25. PF-based method. Results of the GA1 numerical experiment. (a) εr vs. ErrorC(%) for
all generations. The optimum value is 2.1. (b) σ vs. ErrorR(%) for all generations. The optimum
value is 42.3 pS/m.

It can be observed how the distribution of the results has the shape of an arrow that
points to and converges with the optimal value. In Figure 25b, the distribution of σ is
plotted against the error ErrorR(%). This distribution, in the form of an arrow, similarly
points to the optimal value (42.3 pS/m), which coincides with the value obtained by an
exhaustive search method. The values, represented in green in both figures, correspond to
the best generation.

In order to check the convergence of the results of the GA1 experiment, based on
the Pareto optimum, the number of generations was increased from 20 to 100, while the
other GA parameters (Table 3) were unchanged. The results are shown in Figure 26. The
two curves represented in Figure 26a show the best result obtained in the search for any
generation and the average of the results of the entire population in each generation.
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The two curves are practically coincident from generation 20, indicating that, with only
20 generations, an optimal value of εr is obtained.
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Figure 26. PF-based method. Results of the GA11 numerical experiment. (a) Convergence of εr.
(b) Convergence of σ.

However, in Figure 26b, it is observed that, even though the corresponding values of
σ converge to a minimum error for the best values, their means do not converge. This is
because the Pareto front coincides with the x–y axes. Therefore, a distribution on this front
occurs. This corresponds to the ordinate axis, and, for the objective function ErrorR(%) also.
These distributions are uniform.

A new numerical experiment was conducted based on the WS method (GA12 in
Table 2) with the aim of improving the convergence of σ of the population mean. In
Figure 27a, the convergence of εr is represented. Starting from generation 20, it can be
observed how the best and mean values practically coincide. In Figure 27b, using WS as
an objective function, a convergence of σ occurs between the best and mean values from
generation 20. The latter is explained in Figure 28b, where it is observed that the weighted
average error, from generation 20, is very small.
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Figure 29 plots εr against UTest for the five different oil temperatures T. It can be
observed that εr is independent of UTest and decreases as T rises.
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Figure 29. εr vs. test applied voltage UTest.

Figure 30 plots σ against UTest for the five different oil temperatures T. It can be
observed that σ increases with UTest and T.
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Figure 30. σ vs. test applied voltage UTest.

Then, we presented a comparison of the results obtained with the approximate analyt-
ical method presented in [5]. Figures 31 and 32 show the average errors of ε and σ that are
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committed to this approximate method, which does not take into account the geometry
of the TDC.
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After obtaining the physical parameters σ and εr, an evaluation of σ vs. T was
performed using the Arrhenius equation.

As explained in Section 3.3.4, the data obtained from σ depend on the temperature.
The data were fitted to the Arrhenius exponential equation. Following the indications of [8],
the adjusted coefficients of Eac and A were obtained on the basis of this equation; the data
of σ were obtained in the optimization process and T. These coefficients depend on the
applied voltage, since σ also depends on it, as can be observed in Figure 30. The values
obtained for Eac and A are summarized in Table 4. It can be observed how both coefficients
decrease with UTest.

Table 4. Obtained values of Eac and A.

UTest (kV) 3 4 5 6 7 8

Eac (eV) 3.485 2.655 2.274 2.104 2.038 1.948

A (µS/m) 5.440 0.391 0.117 0.008 0.006 0.004

Figure 33 shows the experimental data obtained for electrical conductivity as a function
of temperature. These are represented by black dots.

In addition, based on the coefficients Eac and A, the functions obtained from the
Arrhenius equation are represented for each applied UTest, from 3 to 8 kV. These curves are
represented as solid lines.

The knowledge of these functions is important, since it allows us to obtain the values
of σ at different temperatures and voltages from those measured experimentally. It can be
observed that the experimental data fit the theoretical Arrhenius curves with high accuracy.



Sensors 2023, 23, 1685 25 of 28

Sensors 2023, 23, x FOR PEER REVIEW 26 of 30 
 

 

 
Figure 32. Mean 𝜎 error (%) vs. T. 

After obtaining the physical parameters 𝜎 and 𝜀, an evaluation of 𝜎 vs. T was per-
formed using the Arrhenius equation. 

As explained in Section 3.3.4, the data obtained from 𝜎 depend on the temperature. 
The data were fitted to the Arrhenius exponential equation. Following the indications of 
[8], the adjusted coefficients of 𝐸 and 𝐴 were obtained on the basis of this equation; the 
data of 𝜎 were obtained in the optimization process and T. These coefficients depend on 
the applied voltage, since 𝜎 also depends on it, as can be observed in Figure 30. The val-
ues obtained for 𝐸 and 𝐴 are summarized in Table 4. It can be observed how both co-
efficients decrease with 𝑈ഥ்௦௧. 

Figure 33 shows the experimental data obtained for electrical conductivity as a func-
tion of temperature. These are represented by black dots. 

 
Figure 33. 𝜎 vs. T. The GA-obtained values, represented by dots, conform to the theoretical Arrhe-
nius curves represented by solid lines. 

In addition, based on the coefficients 𝐸 and 𝐴, the functions obtained from the Ar-
rhenius equation are represented for each applied 𝑈ഥ்௦௧, from 3 to 8 kV. These curves are 
represented as solid lines. 

The knowledge of these functions is important, since it allows us to obtain the values 
of 𝜎 at different temperatures and voltages from those measured experimentally. It can 
be observed that the experimental data fit the theoretical Arrhenius curves with high ac-
curacy. 

Table 4. Obtained values of Eac and A. 𝑼ഥ 𝑻𝒆𝒔𝒕 (kV) 3 4 5 6 7 8 

Figure 33. σ vs. T. The GA-obtained values, represented by dots, conform to the theoretical Arrhenius
curves represented by solid lines.

5. Conclusions

In this paper, an experimental NDT analysis of the quality of electrical insulating oils
was conducted using a combination of dielectric loss and capacitance measurement tests.
The transformer oil corresponded to a fresh oil sample. Based on the standard ASTM D
924-15 (standard test method for dissipation factor and relative permittivity of electrical
insulating liquids), effective electrical parameters, such as tan δ of the oil, were obtained.

In addition, a numerical method was proposed to accurately determine, on the basis
of the data obtained in the experimental analysis, the effective electrical resistivity, σ, and
effective electrical permittivity, ε, of an insulating mineral oil for the purpose of fault
detection and diagnosis. The cell method and non-dominated sorting in genetic algorithm-
II (NSGA-II) for multi-objective optimization were used, showing improved accuracy
compared to the existing analytical equations.

The results of the calculations and optimizations conducted show that the best method
for adjusting the properties corresponds to a WS objective function, which is the weighted
average, at 50% between the functions ErrorC(%) and ErrorR(%). The convergence between
the best values of the population and the mean of the population occurs from generation 20.

As the experimental data were collected in a high-voltage domain, wireless sensors
were used to measure, transmit, and monitor the electrical and thermal magnitudes.
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Nomenclature

Symbol Name Unit
A mobility constant S/m
ADC analogical digital converter -
Cp parallel capacity F
CN reference capacitor F
D̃ incidence matrix face–volume in dual mesh -
DSP digital signal processing (Figure 7a) -
E & E∗ complex electric field and its conjugate V/m
Eac activation energy eV
f frequency Hz
G, Gt incidence matrix edges–nodes of primal mesh -

and transpose mat.
Gp conductance S
g1, g2, gsp objective functions -
Ic incidence vector of relative cohomology between -

oil volume and electrode surface
ICp complex capacitive current A
IN complex reference capacitor intensity A
IRp complex resistive current A
It complex total current A
j imaginary unit -
→
J volumetric density current A/m2

K Boltzmann constant J/K
Mε electrical permittivity constitutive matrix F
Mσ electric conductivity constitutive matrix S
PJoule average total losses over time–rms value W
QF quality factor -
Rp parallel resistance Ω
RX , RN highly accurate shunts RX and RN Ω
T temperature ◦C, K
t, t1, t2 time s
tan δ tangent of delta -
tan δC conduction -
tan δH dielectric hysteresis -
tan δP polarization -
tan δI ionization -
UTest complex test voltage V
UX , UN complex voltage in shunts RX and RN V
v volume m3

We time-averaged electrical energy–rms value J
Yp complex admittance S
ε electrical permittivity of the medium F/m
εr relative electrical permittivity -
ε0 electrical permittivity in vacuum F/m
ρ resistivity Ω·m
σ electric conductivity S/m
ϕ scalar electric potential V
ϕm phase difference between voltages UN and UX rad
ϕX angle of It rad
ϕ1 angle of IN rad
ω angular frequency rad/s
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