Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120762
Título: A Non Intrusive Human Presence Detection Methodology Based on Channel State Information of Wi-Fi Networks
Autores/as: Mesa-Cantillo, C. M.
Sánchez Rodríguez, David De La Cruz 
Alonso González, Itziar Goretti 
Quintana-Suarez, Miguel A. 
Ley Bosch, Carlos 
Alonso-Hernández, J. B. 
Clasificación UNESCO: 3325 Tecnología de las telecomunicaciones
Palabras clave: Channel state information
Wi-Fi
Human presence detection
Classification learner
Fecha de publicación: 2023
Proyectos: Plataforma de localización y monitorización para un turismo accesible 
Publicación seriada: Sensors (Switzerland) 
Resumen: In recent times, we have been witnessing the development of multiple applications and deployment of services through the indoors location of people as it allows the development of services of interest in areas related mainly to security, guiding people, or offering services depending on their localization. On the other hand, at present, the deployment of Wi-Fi networks is so advanced that a network can be found almost anywhere. In addition, security systems are more demanded and are implemented in many buildings. Thus, in order to provide a non intrusive presence detection system, in this manuscript, the development of a methodology is proposed which is able to detect human presence through the channel state information (CSI) of wireless communication networks based on the 802.11n standard. One of the main contributions of this standard is multiple-input multiple-output (MIMO) with orthogonal frequency division multiplexing (OFDM). This makes it possible to obtain channel state information for each subcarrier. In order to implement this methodology, an analysis and feature extraction in time-domain of CSI is carried out, and it is validated using different classification models trained through a series of samples that were captured in two different environments. The experiments show that the methodology presented in this manuscript obtains an average accuracy above 90%.
URI: http://hdl.handle.net/10553/120762
ISSN: 1424-8220
DOI: 10.3390/s23010500
Fuente: Sensors (Switzerland) [ISSN 1424-8220] v. 23 (1), 500, (2023)
Colección:Artículos
Adobe PDF (2,36 MB)
Vista completa

Citas SCOPUSTM   

5
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

3
actualizado el 17-nov-2024

Visitas

84
actualizado el 10-ago-2024

Descargas

32
actualizado el 10-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.