Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/120413
DC FieldValueLanguage
dc.contributor.authorCaballero, J.-
dc.contributor.authorHarjani, J.-
dc.contributor.authorSadarangani, K.-
dc.date.accessioned2023-02-06T15:58:27Z-
dc.date.available2023-02-06T15:58:27Z-
dc.date.issued2023-
dc.identifier.issn1660-5446-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/120413-
dc.description.abstractIn this paper, we are interested in the study of the existence and uniqueness of positive solutions to the nonlinear singular fractional differential equation D0+αu(t)+f(t,u(t),(Hu)(t))=0 with 0 < t< 1 , where D0+α denotes the classical Riemmann Liouville derivative, under the integral boundary conditions u(0) = u′(0) = ⋯ = u(n-2)(0) = 0 and u(1)=λ∫01u(s)ds, where λ∈ (0 , α) , H is an operator defined on C[0 , 1] into itself and f: (0 , 1] × [0 , ∞) × [0 , ∞) → [0 , ∞) is a continuous function which can have a singularity at (0, x, y). To state our results, we use a fixed point theorem recently proved. Finally, we present some examples illustrating the results obtained.-
dc.languageeng-
dc.relation.ispartofMediterranean Journal of Mathematics-
dc.sourceMediterranean Journal of Mathematics [ISSN 1660-5446], v. 20 (2), (Abril 2023)-
dc.subject120299 Otras (especificar)-
dc.subject120219 Ecuaciones diferenciales ordinarias-
dc.subject.otherFixed point theorem-
dc.subject.otherFractional boundary value problem-
dc.subject.otherIntegral boundary conditions-
dc.subject.otherPositive solution-
dc.titleExistence and uniqueness of positive solutions to a class of singular integral boundary value problems of fractional order-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s00009-023-02294-5-
dc.identifier.scopus85146962342-
dc.identifier.isi000923649400005-
dc.contributor.orcid0000-0001-8842-426X-
dc.contributor.orcid0000-0002-3154-6773-
dc.contributor.orcid0000-0002-7090-0114-
dc.contributor.authorscopusid7102010775-
dc.contributor.authorscopusid26032169000-
dc.contributor.authorscopusid6603285515-
dc.identifier.eissn1660-5454-
dc.identifier.issue2-
dc.relation.volume20-
dc.investigacionCiencias-
dc.type2Artículo-
dc.contributor.daisngid19538537-
dc.contributor.daisngid15204667-
dc.contributor.daisngid27854330-
dc.description.numberofpages15-
dc.utils.revision-
dc.contributor.wosstandardWOS:Caballero, J-
dc.contributor.wosstandardWOS:Harjani, J-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdateAbril 2023-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,604-
dc.description.jcr1,1-
dc.description.sjrqQ2-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-8842-426X-
crisitem.author.orcid0000-0002-3154-6773-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCaballero Mena, Josefa-
crisitem.author.fullNameHarjani Saúco, Jackie Jerónimo-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.