Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/120413
DC FieldValueLanguage
dc.contributor.authorCaballero, J.-
dc.contributor.authorHarjani, J.-
dc.contributor.authorSadarangani, K.-
dc.date.accessioned2023-02-06T15:58:27Z-
dc.date.available2023-02-06T15:58:27Z-
dc.date.issued2023-
dc.identifier.issn1660-5446-
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/120413-
dc.description.abstractIn this paper, we are interested in the study of the existence and uniqueness of positive solutions to the nonlinear singular fractional differential equation D0+αu(t)+f(t,u(t),(Hu)(t))=0 with 0 < t< 1 , where D0+α denotes the classical Riemmann Liouville derivative, under the integral boundary conditions u(0) = u′(0) = ⋯ = u(n-2)(0) = 0 and u(1)=λ∫01u(s)ds, where λ∈ (0 , α) , H is an operator defined on C[0 , 1] into itself and f: (0 , 1] × [0 , ∞) × [0 , ∞) → [0 , ∞) is a continuous function which can have a singularity at (0, x, y). To state our results, we use a fixed point theorem recently proved. Finally, we present some examples illustrating the results obtained.-
dc.languageeng-
dc.relation.ispartofMediterranean Journal of Mathematics-
dc.sourceMediterranean Journal of Mathematics [ISSN 1660-5446], v. 20 (2), (Abril 2023)-
dc.subject120299 Otras (especificar)-
dc.subject120219 Ecuaciones diferenciales ordinarias-
dc.subject.otherFixed point theorem-
dc.subject.otherFractional boundary value problem-
dc.subject.otherIntegral boundary conditions-
dc.subject.otherPositive solution-
dc.titleExistence and uniqueness of positive solutions to a class of singular integral boundary value problems of fractional order-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.1007/s00009-023-02294-5-
dc.identifier.scopus85146962342-
dc.identifier.isi000923649400005-
dc.contributor.orcid0000-0001-8842-426X-
dc.contributor.orcid0000-0002-3154-6773-
dc.contributor.orcid0000-0002-7090-0114-
dc.contributor.authorscopusid7102010775-
dc.contributor.authorscopusid26032169000-
dc.contributor.authorscopusid6603285515-
dc.identifier.eissn1660-5454-
dc.identifier.issue2-
dc.relation.volume20-
dc.investigacionCiencias-
dc.type2Artículo-
dc.contributor.daisngid19538537-
dc.contributor.daisngid15204667-
dc.contributor.daisngid27854330-
dc.description.numberofpages15-
dc.utils.revision-
dc.contributor.wosstandardWOS:Caballero, J-
dc.contributor.wosstandardWOS:Harjani, J-
dc.contributor.wosstandardWOS:Sadarangani, K-
dc.date.coverdateAbril 2023-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr0,604-
dc.description.jcr1,1-
dc.description.sjrqQ2-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0001-8842-426X-
crisitem.author.orcid0000-0002-3154-6773-
crisitem.author.orcid0000-0002-7090-0114-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameCaballero Mena, Josefa-
crisitem.author.fullNameHarjani Saúco, Jackie Jerónimo-
crisitem.author.fullNameSadarangani Sadarangani, Kishin Bhagwands-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

1
checked on Mar 30, 2025

WEB OF SCIENCETM
Citations

1
checked on Mar 30, 2025

Page view(s)

49
checked on Feb 3, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.