Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120411
Campo DC Valoridioma
dc.contributor.authorCristóbal, Teresaen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.contributor.authorDe Blasio, Gabriele Salvatoreen_US
dc.contributor.authorPadrón, Gabinoen_US
dc.contributor.authorAlayón, Franciscoen_US
dc.contributor.authorGarcía, Carmelo R.en_US
dc.date.accessioned2023-02-06T15:21:14Z-
dc.date.available2023-02-06T15:21:14Z-
dc.date.issued2023en_US
dc.identifier.isbn978-3-031-21332-8en_US
dc.identifier.issn2367-3370en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/120411-
dc.description.abstractAs a result of the COVID-19 pandemic, public transport systems suffered a significant reduction in passengers due to the suppression of services and reduced vehicle capacity. This reduction jeopardized their role as facilitators of sustainable mobility, causing large economic losses to public transport operators. Therefore, an intelligent management aimed at reducing the risk of contagion among its users is an aspect of interest for public transport operators and a challenge from a scientific point of view. This paper presents the results of a study aimed at analyzing the effect of different seat allocation strategies on the risk of contagion among passengers. Starting from a formalization of the problem based on epidemiological and public transport entities, the methodology employed, based on Data Mining, makes use of simulation processes to analyze the effect of these strategies. The paper presents the results obtained by analyzing a route of a public road passenger transport operator. The results allow us to evaluate the risk of contagion of different seat allocation strategies and to evaluate how this risk varies according to the number of passengers who have traveled on a vehicle journey.en_US
dc.languageengen_US
dc.publisherSpringeren_US
dc.relationCOVID19-03en_US
dc.relation.ispartofLecture Notes in Networks and Systemsen_US
dc.sourceLecture Notes in Networks and Systems [ISSN 2367-3370], v. 594 LNNS, p. 209-220, (Enero 2023)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject.otherClose contacten_US
dc.subject.otherCovid-19en_US
dc.subject.otherData miningen_US
dc.subject.otherIntelligent transport systemsen_US
dc.titleStudy of different seat allocation strategies to reduce the risk of contagion among passengers in a public road transport systemen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference14th International Conference on Ubiquitous Computing and Ambient Intelligence (UCAmI 2022)en_US
dc.identifier.doi10.1007/978-3-031-21333-5_21en_US
dc.identifier.scopus85145057657-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-8313-5124-
dc.contributor.orcid0000-0002-6233-567X-
dc.contributor.orcid0000-0002-5573-1156-
dc.contributor.orcid0000-0002-7285-9194-
dc.contributor.orcid0000-0003-1433-3730-
dc.contributor.authorscopusid56495304700-
dc.contributor.authorscopusid13006053800-
dc.contributor.authorscopusid57914405100-
dc.contributor.authorscopusid22986240200-
dc.contributor.authorscopusid6506717943-
dc.contributor.authorscopusid7401486323-
dc.identifier.eissn2367-3389-
dc.description.lastpage220en_US
dc.description.firstpage209en_US
dc.relation.volume594 LNNSen_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.conferenceidevents149971-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,171
dc.description.sjrqQ4
dc.description.miaricds4,3
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-6233-567X-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNameDe Blasio, Gabriele Salvatore-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Colección:Actas de congresos
Vista resumida

Visitas

55
actualizado el 03-ago-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.