Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/120007
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Hernández Guedes, Abián | en_US |
dc.contributor.author | Arteaga Marrero,Natalia | en_US |
dc.contributor.author | Villa, Enrique | en_US |
dc.contributor.author | Marrero Callicó, Gustavo Iván | en_US |
dc.contributor.author | Ruiz Alzola, Juan Bautista | en_US |
dc.date.accessioned | 2023-01-16T14:49:49Z | - |
dc.date.available | 2023-01-16T14:49:49Z | - |
dc.date.issued | 2023 | en_US |
dc.identifier.issn | 1424-8220 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/120007 | - |
dc.description.abstract | Diabetes mellitus presents a high prevalence around the world. A common and long-term derived complication is diabetic foot ulcers (DFUs), which have a global prevalence of roughly 6.3%, and a lifetime incidence of up to 34%. Infrared thermograms, covering the entire plantar aspect of both feet, can be employed to monitor the risk of developing a foot ulcer, because diabetic patients exhibit an abnormal pattern that may indicate a foot disorder. In this study, the publicly available INAOE dataset composed of thermogram images of healthy and diabetic subjects was employed to extract relevant features aiming to establish a set of state-of-the-art features that efficiently classify DFU. This database was extended and balanced by fusing it with private local thermograms from healthy volunteers and generating synthetic data via synthetic minority oversampling technique (SMOTE). State-of-the-art features were extracted using two classical approaches, LASSO and random forest, as well as two variational deep learning (DL)-based ones: concrete and variational dropout. Then, the most relevant features were detected and ranked. Subsequently, the extracted features were employed to classify subjects at risk of developing an ulcer using as reference a support vector machine (SVM) classifier with a fixed hyperparameter configuration to evaluate the robustness of the selected features. The new set of features extracted considerably differed from those currently considered state-of-the-art but provided a fair performance. Among the implemented extraction approaches, the variational DL ones, particularly the concrete dropout, performed the best, reporting an F1 score of 90% using the aforementioned SVM classifier. In comparison with features previously considered as the state-of-the-art, approximately 15% better performance was achieved for classification. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors | en_US |
dc.source | Sensors [1424-8220], v. 23(2): 757, (Enero 2023) | en_US |
dc.subject | 32 Ciencias médicas | en_US |
dc.subject | 3212 Salud pública | en_US |
dc.subject | 3314 Tecnología médica | en_US |
dc.subject.other | Thermography | en_US |
dc.subject.other | Infrared | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Feature extraction | en_US |
dc.subject.other | Diabetic foot | en_US |
dc.title | Feature Ranking by Variational Dropout for Classification Using Thermograms from Diabetic Foot Ulcers | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s23020757 | en_US |
dc.identifier.issue | 2 | - |
dc.relation.volume | 23 | en_US |
dc.investigacion | Ciencias de la Salud | en_US |
dc.type2 | Artículo | en_US |
dc.description.numberofpages | 18 | en_US |
dc.utils.revision | Sí | en_US |
dc.date.coverdate | Enero 2023 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-MED | en_US |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IUIBS: Tecnología Médica y Audiovisual | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | GIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos | - |
crisitem.author.dept | IU de Microelectrónica Aplicada | - |
crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
crisitem.author.dept | GIR IUIBS: Patología y Tecnología médica | - |
crisitem.author.dept | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-2508-2845 | - |
crisitem.author.orcid | 0000-0002-3784-5504 | - |
crisitem.author.orcid | 0000-0002-3545-2328 | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
crisitem.author.parentorg | IU de Investigaciones Biomédicas y Sanitarias | - |
crisitem.author.fullName | Hernández Guedes, Abián | - |
crisitem.author.fullName | Arteaga Marrero,Natalia | - |
crisitem.author.fullName | Marrero Callicó, Gustavo Iván | - |
crisitem.author.fullName | Ruiz Alzola, Juan Bautista | - |
Colección: | Artículos |
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 17-nov-2024
Visitas
81
actualizado el 21-sep-2024
Descargas
33
actualizado el 21-sep-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.