Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/120007
Campo DC Valoridioma
dc.contributor.authorHernández Guedes, Abiánen_US
dc.contributor.authorArteaga Marrero,Nataliaen_US
dc.contributor.authorVilla, Enriqueen_US
dc.contributor.authorMarrero Callicó, Gustavo Ivánen_US
dc.contributor.authorRuiz Alzola, Juan Bautistaen_US
dc.date.accessioned2023-01-16T14:49:49Z-
dc.date.available2023-01-16T14:49:49Z-
dc.date.issued2023en_US
dc.identifier.issn1424-8220en_US
dc.identifier.urihttp://hdl.handle.net/10553/120007-
dc.description.abstractDiabetes mellitus presents a high prevalence around the world. A common and long-term derived complication is diabetic foot ulcers (DFUs), which have a global prevalence of roughly 6.3%, and a lifetime incidence of up to 34%. Infrared thermograms, covering the entire plantar aspect of both feet, can be employed to monitor the risk of developing a foot ulcer, because diabetic patients exhibit an abnormal pattern that may indicate a foot disorder. In this study, the publicly available INAOE dataset composed of thermogram images of healthy and diabetic subjects was employed to extract relevant features aiming to establish a set of state-of-the-art features that efficiently classify DFU. This database was extended and balanced by fusing it with private local thermograms from healthy volunteers and generating synthetic data via synthetic minority oversampling technique (SMOTE). State-of-the-art features were extracted using two classical approaches, LASSO and random forest, as well as two variational deep learning (DL)-based ones: concrete and variational dropout. Then, the most relevant features were detected and ranked. Subsequently, the extracted features were employed to classify subjects at risk of developing an ulcer using as reference a support vector machine (SVM) classifier with a fixed hyperparameter configuration to evaluate the robustness of the selected features. The new set of features extracted considerably differed from those currently considered state-of-the-art but provided a fair performance. Among the implemented extraction approaches, the variational DL ones, particularly the concrete dropout, performed the best, reporting an F1 score of 90% using the aforementioned SVM classifier. In comparison with features previously considered as the state-of-the-art, approximately 15% better performance was achieved for classification.en_US
dc.languageengen_US
dc.relation.ispartofSensorsen_US
dc.sourceSensors [1424-8220], v. 23(2): 757, (Enero 2023)en_US
dc.subject32 Ciencias médicasen_US
dc.subject3212 Salud públicaen_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherThermographyen_US
dc.subject.otherInfrareden_US
dc.subject.otherDeep learningen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherDiabetic footen_US
dc.titleFeature Ranking by Variational Dropout for Classification Using Thermograms from Diabetic Foot Ulcersen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s23020757en_US
dc.identifier.issue2-
dc.relation.volume23en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2023en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Tecnología Médica y Audiovisual-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUIBS: Patología y Tecnología médica-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-2508-2845-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.orcid0000-0002-3545-2328-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameHernández Guedes, Abián-
crisitem.author.fullNameArteaga Marrero,Natalia-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.author.fullNameRuiz Alzola, Juan Bautista-
Colección:Artículos
Adobe PDF (665,03 kB)
Vista resumida

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 17-nov-2024

Visitas

81
actualizado el 21-sep-2024

Descargas

33
actualizado el 21-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.