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Abstract: Diabetes mellitus presents a high prevalence around the world. A common and long-term
derived complication is diabetic foot ulcers (DFUs), which have a global prevalence of roughly 6.3%,
and a lifetime incidence of up to 34%. Infrared thermograms, covering the entire plantar aspect of both
feet, can be employed to monitor the risk of developing a foot ulcer, because diabetic patients exhibit
an abnormal pattern that may indicate a foot disorder. In this study, the publicly available INAOE
dataset composed of thermogram images of healthy and diabetic subjects was employed to extract
relevant features aiming to establish a set of state-of-the-art features that efficiently classify DFU.
This database was extended and balanced by fusing it with private local thermograms from healthy
volunteers and generating synthetic data via synthetic minority oversampling technique (SMOTE).
State-of-the-art features were extracted using two classical approaches, LASSO and random forest, as
well as two variational deep learning (DL)-based ones: concrete and variational dropout. Then, the
most relevant features were detected and ranked. Subsequently, the extracted features were employed
to classify subjects at risk of developing an ulcer using as reference a support vector machine (SVM)
classifier with a fixed hyperparameter configuration to evaluate the robustness of the selected
features. The new set of features extracted considerably differed from those currently considered
state-of-the-art but provided a fair performance. Among the implemented extraction approaches, the
variational DL ones, particularly the concrete dropout, performed the best, reporting an F1 score of
90% using the aforementioned SVM classifier. In comparison with features previously considered as
the state-of-the-art, approximately 15% better performance was achieved for classification.

Keywords: thermography; infrared; deep learning; feature extraction; diabetic foot

1. Introduction

Diabetes mellitus is a chronic disease whose global prevalence was estimated to be
10.5% (536.6 million people) in 2021, which is expected to rise to 12.2% (783.2 million) in
2045 according to the International Diabetes Federation [1]. Diabetic foot ulcers (DFUs)
constitute a long-term and common complication derived from diabetes [2,3] with an
estimated global prevalence of roughly 6.3% [4] and a lifetime incidence of between 19%
and 34% for the diabetic population [5]. Ulcers represent the most frequently recognized
and highest risk factor, because a possible infection of the wound often results in the
amputation of the foot or lower limb. Worldwide, it is estimated that a limb is amputated
every 20 s due to diabetes [6]. Furthermore, the recurrence rate of DFU is high and varies
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widely among different regions. The recurrence rates remain about 60% after three years
[5], although these figures have been updated and, as of 2019, the recurrence rate estimation
was 22.1% per person-year (py) [7]. The lowest recurrence rate was roughly 16.9% per py
in Africa, while the highest was 24.9% per py in Europe [7].

These complications can be avoided, reduced, or substantially delayed by early de-
tection, assessment, diagnosis, and tailored treatment [2,8]. DFU detection by machine
learning (ML) or deep learning (DL) approaches is mainly focused on the already formed
ulcer [9,10]. A large public dataset, composed of 4000 images with ground truth labeling,
was released for the Diabetic Foot Ulcers Grand Challenge (DFUC 2020) aiming to improve
the detection accuracy in a real-world scenario and to accelerate the development of innova-
tive approaches [6]. In addition, extensive literature can be found for DFU localization and
detection [11], as well as wound classification [12–14]. Furthermore, remote, noncontact,
and automated DFU detection may be plausible using mobile and cloud technologies [6].

Alternatively, identifying the underlying conditions that sustain skin and tissue dam-
age at an early stage, previous to the onset of superficial wounds, is an emerging area of
research [15–18]. Early diagnosis is extremely valuable for any pathology, particularly
one that can prevent a fatal outcome, as in the case of the present application. Infrared
thermography has demonstrably established itself as a complementary tool for the early
identification of superficial tissue damage. Real-time visualization of plantar temperature
distribution is provided while the surface to be measured remains intact [3]. Thus, the
entire plantar aspect of both feet can be conveniently analyzed in a very short time with
great sensitivity and specificity, putting forward thermography as a suitable technique for
diabetic neuropathy screening programs [19]. Nevertheless, the heat pattern of the plantar
aspect of the feet and its association with diabetic foot pathologies are subtle and often
nonlinear [20]. Thus, the interpretation of plantar thermograms requires the development
of computer-aided eiagnosis (CAD) systems that do not rely on subjective interpretations
or inherent limitations of human visual perception. Consequently, interobserver variabil-
ity and workload may be decreased, whereas CAD systems may outperform clinicians
regarding cost, accuracy, and speed, thus leading to an enhanced level of medical care [3].

Ideally, these CAD systems should classify subjects at risk of developing an ulcer
from a single thermogram containing the plantar aspect of both feet and, if possible,
quantify the severity of the lesion. Previous attempts proposed quantitative parameters
for detecting thermal changes based on the varying temperature distribution exhibited by
diabetic subjects in comparison with healthy ones [3]. Recently, the importance of early
detection and gaps regarding performance accuracy were brought into focus, resulting
in the development of an unsupervised approach for severity stratification [18]. Several
features based on infrared thermography are proposed in the state-of-the-art methods for
identifying foot disorders. Additionally, there is an interest in detecting features that are
relevant for the detection of DFU [18]; different methods for feature selection are being
explored.

Feature selection is a field of statistical multivariate and ML methods that reduces the
number of input variables. The main objective is to find an optimal subset from the input
variables set, S, that causes an improvement, for instance, in the classifiers by reducing the
amount of redundant input data. This provides classifiers with a better cost–performance
ratio. At the same time, it improves the interpretability of data, which are commonly
high-dimensional [21].

Feature selection methods can be traditionally categorized into the following classes:
filter, wrapper, and embedded methods. Filter methods consist of a preprocessing step that
removes irrelevant features based on a per-feature relevance score [21–24]. The wrapper
methods are those in which, after defining the searching subspace (all possible variable
subsets) and applying a model as a black box, a search and evaluation strategy is carried
out to obtain the optimal selection of variables or features [21,25]. These methods are
computationally expensive and especially demanding in DL models [26]. Finally, em-
bedded methods incorporate variable selection during the training process, employing a



Sensors 2023, 23, 757 3 of 18

regularization for reducing the number of variables used during classification [21]. The
least absolute shrinkage and selection operator (LASSO) regularization technique [27] is
the most popular embedded method, whose objective function is constrained by an L1
normalization. LASSO is widely used [28,29] but its main limitation is the restriction to
linear functions.

In this study, following previous approaches to determine relevant features, variational
dropout [30,31] was used as a feature selection embedded method for reducing the state-of-
the-art variables used for DFU detection based on infrared thermograms. In addition, a
new approach based on selecting the features in coincidence among the different feature
selection methods was designed. The new set of features extracted was employed as
input for a support vector machine (SVM) [32] classifier. The SVM classifier was used
as a reference, with the aim of assessing the performance of these features. Finally, for
comparison purposes, features previously reported as state-of-the-art were also fed to the
classifier.

2. Material and Methods
2.1. Variational Dropout

Dropout [33], or binary dropout, is a regularization technique commonly used in DL
models to reduce overfitting. This mechanism consists of applying multiplicative Bernoulli
noise for each hidden unit in the neural network, i.e, it is a feed-forward operation described
as:

z ∼ Bern(ρ),

θ̂ = θ � z,

y = σ(θ̂x + b),

(1)

where x denotes the vector of inputs into the layer; θ and b are the weights and biases in
the layer, respectively; σ is a nonlinear activation function, such as the sigmoid function;
and � is a Hadamard dot product. The ρ value from the Bernoulli distribution, Bern(.),
also known as the dropout rate value, is a hyperparameter and represents the probability
of an element being zeroed.

The Gaussian dropout is an alternative to the aforementioned binary dropout. In
this case, the Gaussian dropout defines the multiplicative noise, such as r ∼ N (1, ρ

1−ρ ).
Srivastava et al. reported that it has similar performance to the binary dropout with a
dropout rate value ρ [33].

Variational dropout is a reinterpretation of the dropout with continuous noise, r ∼
N (1, α) as a variational method proposed by Kingma et al. [30]. In this case, α is a
variational parameter of the model instead of a hyperparameter as in the Gaussian dropout.
Using multiplicative noise is equivalent to putting noise on the weights so that the posterior
distribution of the weights is given by qφ(wi,j) = N (θi,j, αθ2

i,j). However, the application of
noise in weight wi,j si gnificantly increases the variance of the gradients. For this reason,
authors proposed the reparameterization trick [30,34] so the weights are sampled as:

wi,j = f (φi,j, εi,j) = θi,j(1 +
√

αεi,j)

εi,j ∼ N (0, 1)
(2)

where φ = (θ, α) are the variational parameters, and ε is the noise applied on the weights.
The reparameterization trick leads to an estimator that has lower variance [30].

An alternative to variational dropout proposed by Kingma et al. is the concrete
dropout [31], which is a variational approach to the original binary dropout. The Bernoulli
distribution is problematic due to its discrete nature and does not allow efficient opti-
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mization based on gradients. For this reason, Gal et al. proposed replacing this discrete
distribution with a continuous relaxation of the same, a concrete distribution relaxation [35]:

zi,j = f (φ, εi,j) = σ

(
1
t
(log ρ− log(1− ρ) + log εi,j − log(1− εi,j))

)
εi,j ∼ U (0, 1)

(3)

where σ is a sigmoid function, t ∈ [0, 1] is known as temperature, and φ = (ρ) is the
variational parameter.

2.1.1. Stochastic Variational Inference

In variational inference, given two random variables X and Z, p(Z|X) is approximated
by a parametric distribution qφ(Z), and the quality of this approximation is measured by
the Kullback–Leibler divergence, DKL(qφ(Z)||p(Z|X)). In this way, the optimal values for
variational parameters φ are defined by the evidence lower bound [36]:

L(φ) = L(φ)− DKL(qφ(z)||p(z)) (4)

where L(φ) is the expected log-likelihood, which, in practice, can be interpreted as the
cross-entropy loss function, and DKL(qφ(z)||p(z)) works as a regularization term.

However, using complex models such as deep neural networks, Equation (4) is in-
tractable; thus, the evidence lower bound and its gradient cannot be exactly computed.
By using the reparameterization trick, where z = f (φ, ε), Kingma et al. [34] proposed an
estimator of the marginal log-likelihood of the full dataset, based on mini-batches, named
the stochastic gradient variational Bayes (SGVB) estimator:

LSGVB(θ, φ; X(m)) =
N
M

M

∑
i=1

log p(ỹi|xi, f (φ, εi))− DKL(qφ(z)||p(z)) (5)

where Xm ∈ {x1, x2, ...xM} is a mini-batch of M random samples, from the full dataset X,
composed of N samples.

2.1.2. Feature Selection by Variational Dropout

The variational approach of the dropout can be interpreted as an embedded method
for feature selection. Let X ∈ RD be the input domain of a target domain Y ; the embedded
method aims to obtain a subset XS ⊂ X , i.e., a sparse representation where S < D. Taking
this into account, the training objective is defined as follows:

argmin
θ,s

L( f (X� s; θ), Y) (6)

where s = {0, 1}D is the vector indicating the S variables selected. Note that in the
relationship with binary dropout, Equation (1), is appreciable. In this case, variational
dropout consists of applying a dropout layer in the input layer as a feature selector. Figure
1 illustrates the proposed method employing variational dropout as a feature selector
embedded method.

However, it is possible to use dropout with continuous noise for feature selection.
Molchanov et al. [37] exhibited that variational dropout (From this point onwards, varia-
tional dropout will be used to refer to the dropout proposed by Kingma [30]). proposed
by Kingma et al. [34] led to extremely sparse solutions. In Gaussian dropout, the case of
α → ∞ corresponds to a binary dropout where ρ = 1 (recall α = ρ

1−ρ ). As the authors
pointed out, an infinitely large α in the variational dropout corresponds to applying an
infinitely large multiplicative noise in θ, concluding that this weight is absolutely random,
as seen in Equation (2). In this case, the α variational parameter might be considered a
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feature ranking. The idea to force the sparse representation is to use a threshold τ for
deactivating the features that are highly noisy.

Figure 1. Dropout as a feature selection method. The variational parameter φd, where d ∈ [1 . . D],
controls the probability of the input feature xd to be dropped out, that is, an estimate of the noise
level of xd. The variational parameters are used for feature ranking.

Regarding concrete dropout, there is a limitation that prevents its use as a feature
selection method: the regularization DKL in Equation (5). Thus, Gal et al. defined DKL as
follows [31]:

DKL(qφ(w)||p(w)) = κθ ||θ||2 − κρH(ρ) (7)

where κθ and κρ are regularization factors for θ and ρ, respectively; and H(ρ) defines
Shannon’s entropy of a Bernoulli random variable with probability ρ. The hyperparameters
κθ and κρ have a specific relation [31], which is not specified here, because it is out of the
scope of the present study. As can be observed in Equation (7), κθ forces θ to stay close to 0,
and κρ pushes the dropout probability towards ρ = 0.5, which is the point of maximum
entropy of the distribution. Taking this into consideration, the variational parameter ρ
would tend to be in ρ ∈ [0, 0.5]. Nevertheless, it is recommended to force unnecessary
features to values close to one.

Concrete dropout is a practical method for applying l0 regularization that solves the
aforementioned problem. Chang et al. [38] proposed penalizing the number of features
not dropped-out, but its performance was highly dependent on the regularization factor.
Louizos et al. [39] used a hard-concrete distribution that forces values between 0 and
1. Yamada et al. [40] proposed a Gaussian-based continuous relaxation of the Bernoulli
distribution. All these approaches have the same purpose, which is to penalize the number
of features used. For this reason, in order to use concrete dropout as a feature selector,
Equation (5) is replaced with the following loss function:

L(θ, φ; X(m)) =
1
M

M

∑
i=1

log p(ỹi|xi � zi) +
1
D

D

∑
j=1

(Φ(ρ)) (8)

where Φ(.) is the cumulative distribution function (CDF), and zi = f (φi, εi) is the concrete
distribution relaxation of binary dropout as indicated in Equation (3). Finally, to achieve
a sparse representation, the Molchanov et al. [37] approach was employed, in which a
threshold τ is applied to the variational weights to force the sparse representation by
z = {0, 1}D.

2.2. Dataset Description

Throughout this study, the Instituto Nacional de Astrofísica, Óptica y Electrónica
(INAOE) thermogram dataset [41], released in December 2019, was used. Currently, this
dataset is the only publicly available thermogram database composed of samples from 167
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volunteers: 122 diabetic and 45 nondiabetic subjects. This dataset was originally intended
to study how the temperature is distributed in the plantar region among diabetic and
nondiabetic subjects and how those differences can be measured. However, thermograms
have been widely used for DFU detection at an early stage [18,42,43].

The INAOE dataset is slightly unbalanced toward diabetic cases. For this reason, our
initial aim was to balance this dataset. Firstly, an additional group of healthy subjects was
included; therefore, an extended and more balanced database was created by fusing the
INAOE dataset with a private local dataset. Then, because this initial procedure did not
suffice to achieve a balanced dataset, synthetic data were generated via synthetic minority
oversampling technique (SMOTE) [44]. In this way, the number of samples was increased
from 167 to 244, 122 per class.

Local Dataset

Infrared (IR) images were acquired using an affordable TE-Q1 Plus camera from
Thermal Expert™ (i3system Inc., Daejeon, Korea), described in detail in a previous pub-
lication [45]. An acquisition campaign was carried out among healthy coworkers (N =
22) at IACTEC, composed of nine women and thirteen men [46]. For each subject, four
images were acquired at T0, T5, T10, and T15. The first image (T0) was acquired as soon
as the subject adopted a supine position barefoot. The subsequent images were acquired
every 5 min up to 15 min while the subject was keeping their feet off the ground. An
unconstrained protocol was used for the acquisition in a room with controlled luminosity,
humidity, and ambient temperature (25 ºC). Because the acquisition protocol for the INAOE
database employed 15 min resting position to reach a state of thermodynamic equilibrium
[41,47], only the images corresponding to T15, from the internal dataset, were employed to
create the extended database. No specific standardization procedure was carried out to
fuse the datasets despite the different ambient conditions and devices employed for the
respective acquisitions.

2.3. Feature Extraction

Following the workflow proposed in the INAOE dataset, the IR images from the
local dataset were processed to automatically segment the angiosomes, a composite unit
of tissues supplied by an artery, as previously described in [41,47]. By considering these
angiosomes, the foot was divided into four regions: Medial Plantar Artery (MPA), Lateral
Plantar Artery (LPA), Medial Calcaneal Artery (MCA), and Lateral Calcaneal Artery (LCA),
as illustrated in Figure 2.

This segmentation step was required to extract the features for each angiosome [48],
which included the thermal change index (TCI) [47], the estimated temperature (ET), the
estimated temperature difference (ETD), the hot spot estimator (HSE) [48], as well as
the summarizing statistics (mean, standard deviation, maximum, minimum, skewness,
and kurtosis). In addition, these features also extracted for the entire foot, and following
previous approaches [18,48], a class, based on the normalized temperature ranges (NTR),
was assigned to each foot.

Regarding the extraction of the TCI feature, despite the extended database containing
more control subjects, the average control temperature was kept unchanged, being the
values previously reported [41,47] considered as reference. These values are displayed
in Table 1, and, for comparative purposes, the mean values corresponding to the healthy
subjects, from the internal dataset, are also listed.
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Figure 2. Graphical illustration of the defined angiosomes. The main reference points considered and
the proportional foot division are also specified [41,47]. Reference point A was located at the tip of
the innermost toe, whereas B at the center of the calcaneal base. Points C and D corresponded to the
wider part of the foot. Point E corresponded to the 60% height of the foot.

Table 1. Mean temperature values per angiosome in the control group for the INAOE database [47]
and the local dataset described in Section 2.2. SD indicates standard deviation.

Angiosome INAOE Local
T (ºC) SD T (ºC) SD

MPA 25.8 1.4 25.0 3.0
LPA 25.7 1.3 24.5 3.1

MCA 26.4 1.3 24.5 2.5
LCA 26.1 1.4 24.5 2.6

Furthermore, in order to extract the ET as well as the subsequently associated pa-
rameters, ETD and HSE, thermograms were clustered into classes based on temperature
ranges. In the original study [48], Peregrina et al. used a dataset in which the feet were not
segmented, so the background objects and their respective temperatures were present in
the images. As a consequence, the classes were defined, from C0 to C7, whose temperatures
were within the interval [25, 35) ºC and, excluding C0, each class covered 1 °C. To avoid
high temperatures from heat sources unrelated to the feet, temperatures between [25, 28) ºC
were considered cold and associated with the background (C0). The other classes were
selected according to previously reported data [49], in which subjects with diabetes had a
mean temperature of 30.2± 1.3 ºC, whereas for healthy subjects, the mean temperature was
26.8± 1.8 ºC. Because the dataset used in this work was previously segmented, the range of
temperatures to be considered was extended, covering the interval [18, 37) ºC; therefore, the
classes were redefined as listed in Table 2. In this way, the complete range of temperatures
in the dataset was taken into consideration. As can be observed, the number of classes
was extended to 10, covering approximately 1 ºC, except C1, C2, and C10. Furthermore,
because the considered temperature interval was extended, the number of NTR classes was
subsequently adjusted regarding the original study [18,48]. Finally, the mean value of the
established intervals, the classmarks, were used for ET, ETD, and HSE feature extraction.
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The nomenclature employed to name the aforementioned extracted features consisted
of using a letter to specify the foot, ‘L’ for left and ‘R’ for right, followed by the name of
the corresponding angiosome. For the features extracted using the entire foot, this second
descriptor was discarded. Then, the variable was set using lowercase letters such as mean,
std, max, min, skew, or kurtosis. Capital letters were employed for TCI, HSE, ET, and ETD,
as well as for NTR followed by the subsequent class.

Table 2. Classes defined according to the temperature of the foot’s thermograms.

Class NTR Class Interval (ºC) Classmark (ºC)

C1 NTR_C1 [18,22) 20.0
C2 NTR_C2 [22,26) 24.0
C3 NTR_C3 [26,27) 26.5
C4 NTR_C4 [27,28) 27.5
C5 NTR_C5 [28,29) 28.5
C6 NTR_C6 [29,30) 29.5
C7 NTR_C7 [30,31) 30.5
C8 NTR_C8 [31,32) 31.5
C9 NTR_C9 [32,33) 32.5
C10 NTR_C10 [33,37) 35.0

2.4. Feature Selection

Given a set of input variables S = {X1, X2, ..., Xn}, a feature selection method aims to
reduce the number of input variables to obtain a small subset of them that contains the
most relevant and least redundant information about a desired variable Y. In this study, the
number of input variables was as high as 188, and a detailed investigation was proposed
to detect the most relevant features based on different approaches. These included some
classical methods, random forest and LASSO, as well as two innovative ones based on
variational DL (see Section 2.1).

Firstly, the original input set was optimized by removing highly correlated variables.
The correlation estimation was carried out using the well-known Pearson correlation
coefficient [50]; therefore, those features with a correlation r > 0.95 were considered
highly correlated. For instance, a high correlation between the mean value and the ET
was observed, allowing a reduction in the number of features. Then, a feature ranking
based on logistic regression was developed to select the most informative variables among
them. These redundant variables were ranked based on an AUCROC analysis [51] using
the logistic model as an estimator. As a result, the number of features or input variables
was reduced a ∼25.5%, from 188 to 140.

Five-fold cross-validation was employed, dividing the dataset into five folds (80%
training and 20% testing set), and the performance metric for the testing set was computed
five times. Therefore, around 196 samples were used for training and 48 for validation. The
relevance of the features was the average value resulting from the five iterations during the
cross-validation.

3. Results

Regarding the evaluation of feature ranking based on variational DL approaches, the
implemented architecture is depicted in Figure 3. As can be observed, the variational
feature selector was just used in the first layer after the input. Two dropout layers were
added in the following layers to mitigate overfitting problems, in which a ρ = 0.2 was
employed as the dropout rate.

The results presented in this section were extracted using a batch size of 32 samples
during the training process, having a minimum batch size of 4 in the last iteration. The
ADAM optimizer [52] was used for training the DL model. The parameters to control
exponential decay rates for the moment estimation, β1 and β2, were set to 0.9 and 0.999,
respectively. The learning rate (lr) was set to 10−2 when the variational feature selector was
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the concrete dropout approach and lr = 10−3 when variational dropout was applied. The
number of training epochs was set to 500.

Variational Feature Selector Fully-Connected + ReLU Dropout Softmax

Figure 3. Deep learning architecture used for the feature selection based on variational dropout
approaches. The first layer corresponds to variational dropout as a feature selector, illustrated in
Figure 1.

In order to avoid many features becoming pruned early during the first iteration of
the training, a Lagrange multiplier, λ ∈ [0, 1], was employed in the regularization term of
Equations (4) and (8). So, the model was able to learn a valuable representation of the data
in the latent spaces before being heavily penalized. Specifically, λ linearly increases from 0
to 1 using a step size of 2.5× 10−3 per epoch. This approach is based on the DKL annealing
trick for variational autoencoders [34] previously proposed in [53].

The performance of the models was evaluated by applying τ > 0.9 (see Section 2.1.2)
to obtain the sparse representation of the original input space. Figure 4 shows the sparse rate
during the training phase of the respective model in each iteration of the cross-validation.
As can be observed, concrete dropout obtained a sparse rate of around 50%, and the
variational dropout approach obtained a sparse rate of around 60% in most of the cases.
This means that, in general, more than half of the features were considered irrelevant.
Additionally, variational dropout started to become sparser in an early epoch, whereas
concrete dropout required a higher λ. According to the sparse representation, using the
test set in each fold, average accuracies were 89.1% and 85.7% for concrete and variational
dropout, respectively. In addition, we noticed that using the variational parameter, φ, as
feature ranking, the most important features were roughly the same in all the experiments.
In comparison, the LASSO approach received a sparse rate of 44%, using a lower number
of features than the DL approaches, and with an approximate accuracy of 90%. These
results were not reliable for comparison purposes because the models were fully optimized,
including the hyperparameters, and the test set was not large enough to reject a possible
overfitting.

3.1. Feature Selection

Following the workflow described in Section 2.4, the most relevant features, listed
in Table 3, were extracted for all the approaches considered: LASSO, random forest, and
concrete and variational dropout. For the LASSO approach, the feature ranking was
estimated by the absolute value of its coefficient. In relation to concrete and variational
dropout, the variational parameter was used as feature ranking (see Section 2.1.2).
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Figure 4. The sparse rate obtained in the variational feature selector using τ > 0.9 as threshold in the
different cross-validation iterations.

Table 3. The 30 most relevant features extracted, listed according to rank, for all the approaches
considered: LASSO, random forest, and concrete and variational dropout. The 10 first features are
highlighted in bold as the most relevant for each method. The nomenclature employed is defined in
Section 2.3.

Rank LASSO Random Forest Concrete
Dropout

Variational
Dropout

1 R_LPA_min L_MPA_min R_LPA_min R_LPA_min
2 L_LPA_std R_LPA_min R_MCA_std R_MPA_HSE
3 Foot_ETD L_MPA_NTR_C3 Foot_ETD MCA_ETD
4 L_MPA_min R_MCA_std R_LCA_kurtosis L_kurtosis
5 L_MPA_skew R_LPA_std R_LPA_std L_MPA_skew
6 L_LCA_NTR_C4 L_MPA_std L_MPA_min L_MCA_skew
7 R_LPA_NTR_C3 L_LPA_NTR_C2 LPA_ETD R_LCA_kurtosis
8 R_MPA_NTR_C4 L_LPA_std L_LPA_std R_LPA_std
9 L_MPA_HSE R_LCA_NTR_C2 L_MCA_skew L_MPA_NTR_C4
10 R_MCA_std R_MPA_NTR_C2 L_MPA_HSE L_LCA_std
11 LCA_ETD R_MPA_std R_LCA_skew R_LPA_HSE
12 MCA_ETD R_LCA_mean MCA_ETD R_LCA_std
13 R_LCA_kurtosis L_MCA_min L_MCA_std Foot_ETD
14 R_MPA_NTR_C3 L_LCA_NTR_C2 MPA_ETD R_MCA_std
15 R_LCA_NTR_C3 L_MCA_mean LCA_ETD LPA_ETD
16 L_kurtosis R_MPA_ET R_MCA_skew L_MCA_std
17 R_std R_std L_MPA_skew R_MCA_skew
18 R_LCA_HSE L_MCA_NTR_C2 R_kurtosis L_MCA_NTR_C5
19 R_skew L_LPA_ET R_HSE R_MCA_HSE
20 L_HSE L_LPA_NTR_C1 L_LCA_kurtosis R_kurtosis
21 R_LPA_NTR_C5 L_LCA_NTR_C3 R_LCA_std LCA_ETD
22 L_max Foot_ETD L_MPA_std R_LCA_skew
23 L_MCA_std LPA_ETD L_LCA_std R_MPA_std
24 L_LPA_NTR_C4 L_MPA_NTR_C4 R_LCA_HSE R_MPA_NTR_C4
25 L_MCA_NTR_C3 L_NTR_C3 R_skew L_MPA_NTR_C3
26 LPA_ETD L_std R_MPA_NTR_C4 L_LPA_NTR_C2
27 R_MCA_HSE L_kurtosis R_MPA_HSE R_LCA_HSE
28 L_MCA_skew R_MPA_NTR_C3 L_MCA_kurtosis L_MPA_HSE
29 L_LPA_NTR_C5 L_MCA_std L_LCA_NTR_C4 L_MCA_HSE
30 R_NTR_C5 L_LCA_max L_kurtosis L_skew

The 10 first features extracted for each approach were considered the most relevant
and are highlighted in bold in Table 3. Therefore, approximately 0.05% of the total features
extracted were considered relevant. Regarding the distribution of these features by angio-
some, MPA and LPA presented the largest number of features with a total of nine and six
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associated features, respectively. LCA and MCA angiosomes had, respectively, three and
four associated features each. For the entire foot, only two associated features were found.

Furthermore, the ten first features found to appear in all the implemented approaches
are listed by rank in Table 4. The ranks of these features changed according to the approach
employed. Thus, the lowest rank of each feature, among the different approaches, was
assigned as its final rank. The search for coincidence was restricted to the first 30 ranked
features provided for each approach. However, as observed in Table 4, the assigned ranks
are listed in intervals ranging from ten units. Features found up to a rank lower than 50
were considered. As noticed, if only the 10 first features in coincidence were considered,
the angiosomes with more associated features were LPA and the entire foot, with three
associated features both, whereas MCA and LCA had two associated features each. No
associated features were found for the MPA angiosome in this case.

Table 4. Most relevant features that coincided in all the approaches considered, listed according to rank.

Rank Features in Coincidence

Rank < 10 R_LPA_min

Rank < 20 R_MCA_std

Rank < 30 Foot_ETD
LPA_ETD

L_MCA_std
L_kurtosis

Rank < 50 L_LPA_std
R_kurtosis
R_LCA_std

R_LCA_kurtosis

Considering the features in coincidence among the different approaches, Table A1, in
Appendix A, depicts an extended version of the most promising features distributed per
angiosome. As observed, the largest number of features in coincidence, a total of four, was
associated with the LPA angiosome.

An SVM [32] classifier was used with all the features as input to provide a reference
aiming to quantify the performance of the extracted features, their rank, and selected
combination. SVM aims to generate a hyperplane in a high-dimensional space, generated
by a kernel, that separates the data into classes. Initially, using the available features as
input, the SVM classifier was optimized using a randomized search [54] to obtain the best
parameters. As a result, a Gaussian kernel, also known as the radial basis function (RBF)
kernel, was used. The RBF kernel has a hyperparameter, γ, that controls the spread of
the Gaussian center. In addition, the hyperparameter C in SVM is used for directing the
L2 penalty, which controls the trade-off between decision boundary and misclassification.
The best performance, displayed in Table 5, was achieved with a γ value of 0.0035 and a C
value of 7.743.

Table 5. Performance metrics of the optimized SVM classifier using all available features as input.

Input Dataset Accuracy Precision Recall F1 Score

All features 0.9099 ± 0.0613 0.9473 ± 0.0705 0.8535 ± 0.1016 0.8965 ± 0.0837

3.2. Evaluation of Features by SVM Classifier

Several experimental settings were considered to evaluate the extracted features for the
chosen classification task, which was to distinguish between healthy and diabetic patients.
In this case, the SVM classifier was not optimized; that is, standard hyperparameters were
chosen to offer a fair comparison between the proposed approaches to rank the features.
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For the different experiments described in this section, γ was set to 0.1, motivated by the
low dimensional space of the input data. In addition, the hyperparameter C was set to 1.
This configuration was the same for the different selected features, trying to avoid bias in
the conclusions due to well-fitted settings for the indicated features. The average value
resulting from five-fold cross-validation, testing the models five times, was used for the
metrics estimation depicted in Table 6, as previously reported [18].

First, the SVM was fed with the ten first features extracted for each approach, LASSO,
random forest, and concrete and variational dropout (features highlighted in bold in
Table 3). Second, the ten first features in coincidence, this is, those that appeared in all the
approaches and are listed in Table 4, were also employed to feed the classifier. Finally, to
compare the features extracted and the subsequent classification task with those from a
previous study [18], the following ten ranked features were also considered: TCI, NTR_C4,
NTR_C3, MPA_mean, LPA_mean, LPA_ET, LCA_mean, highest temperature, NTR_C2,
and NTR_C1. These features were among the top ten features resulting from testing
several techniques, which included Pearson, chi square, recursive feature elimination (RFE),
logistics, random forest, and LightGBM. The metrics of the performance for each approach,
according to the experimental settings described, are listed in Table 6.

Notice that, contrary to the setup employed in the present study in which all features
were extracted by foot, L or R, the foot to which the previously mentioned features were
associated was not specified in [18]. Therefore, the mean value between both feet was
calculated in order to match these features and offer a fair comparison. In addition, the
NTR class definition considerably differed from the one considered previously; thus, the
equivalent class, based on temperature values, was used instead. NTR_C4 and NTR_C3 in
the original study corresponded to ranges between 31 and 32 ºC as well as 30 and 31 ºC,
respectively [18,48]. In the present study, the closest approximations were NTR_C8 and
NTR_C7, for which the respective ranges coincided with the ranges mentioned above.

Considering the features extracted for each approach and the subsequent classification
task, all approaches provided good metric values. However, the best scores, except for the
recall parameter, were observed for the concrete dropout approach. When the set of relevant
features were those common to all the approaches, although at different rank positions, the
performance in this experimental setting provided the best recall. Furthermore, as noticed,
the recall values were lower in comparison with the other parameters of the performance
metrics. This may have been due to the imbalance between healthy and diabetic samples
from the original dataset, because a low recall score is associated with a high number
of false negatives. A relevant number of healthy samples was generated for balancing
using SMOTE, which performed a linear interpolation between samples. Therefore, recall
was penalized because it was exclusively dependent on the diabetic samples. In this case,
considering the precision–recall tradeoff, a lower recall was preferred due to the associated
implications.

As shown in Table 6, the performance of all the models when using the corresponding
first 10 features as well as when using the first 10 features in coincidence, was quite similar
to those considered as reference values (shown in Table 5). However, the classical LASSO
approach and DL-based concrete dropout exhibited a slightly better performance with only
10 features.

4. Discussion

Several approaches were considered to select relevant features used for DFU detection
based on infrared thermograms. Classical approaches, LASSO and random forest ,were
tested versus two innovative approaches based on DL, concrete and variational dropout.
The outputs of these approaches were analyzed to extract a new set of features considered
relevant to classify whether a thermogram corresponded to a healthy or diabetic person.
The results provided by the proposed approaches exhibited promising results, particularly
for the concrete dropout approach.
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Table 6. Performance metrics of the approaches considered, according to the selected input features,
in each experimental setting. The highest value for each performance metric is highlighted in bold.

Input Dataset Approach Accuracy Precision Recall F1 Score

First 10 features

LASSO 0.8975 ± 0.073 0.9533 ± 0.079 0.8361 ± 0.130 0.8908 ± 0.107
Random Forest 0.8893 ± 0.070 0.9703 ± 0.080 0.8033 ± 0.118 0.8789 ± 0.103

Concrete dropout 0.9098 ± 0.069 0.9808 ± 0.057 0.8361 ± 0.131 0.9027 ± 0.104
Variational

dropout 0.8934 ± 0.054 0.9615 ± 0.049 0.8197 ± 0.104 0.8850 ± 0.081

First 10 features in
coincidence

LASSO, random
forest, concrete
and variational

dropout

0.9057 ± 0.066 0.9626 ± 0.052 0.8442 ± 0.135 0.8995 ± 0.102

Selected features
from [18]

Pearson, chi
square, RFE,

logistics, random
forest, and
LightGBM

0.7951 ± 0.075 0.8750 ± 0.136 0.6885 ± 0.089 0.7706 ± 0.103

Regarding the performance of the traditional approaches in comparison with that
of the DL-based ones, LASSO provided results close to those of the concrete dropout,
according to the F1 score, although the latter exhibited a slightly better performance com-
pared with the established reference values. However, LASSO is limited to linear solutions,
while concrete dropout does not suffer from this limitation. No fine-tuning of the models
was implemented to increase the respective performance, because a comparison between
extracted input features was intended. Thus, when a few features were used, i.e., 10, both
methods produced promising performance. In this particular case, the LASSO approach
would be an easy-to-implement and faster alternative to concrete dropout, as comparable
performance was achieved. Furthermore, considering the most relevant features of each
approach, six of the selected features matched for these two approaches, see Table 3. Thus,
the similarity in performance may have been due to this coincidence of features.

For further comparison, the optimization of these two approaches, considering 10
input features, was performed. The hyperparameters considered for fine-tuning were the
kernel (RBF, linear, or polynomial), the degree of the polynomial in case the corresponding
kernel was selected, γ, and C (data not shown). For the LASSO approach, the best model
used a third-degree polynomial kernel with a γ value of 0.1 and a C value of 2.2. The best
concrete dropout settings were achieved for the RBF kernel, with a γ value of 0.3, and a
C value of 3.8. The F1 scores were approximately 0.89 and 0.90 for LASSO and concrete
dropout, respectively. Thus, the performance of the LASSO approach closely matched that
of the reference (0.8965± 0.0837). Additionally, an increase in the number of input features
from 10 to 50, in combination with an optimized SVM, exhibited a slightly increased
performance for the LASSO approach, with an F1 score of roughly 0.91. However, the
performance of the concrete dropout decreased with an approximate F1 score of 0.87. In this
case, both approaches used an RBF kernel, with γ being 0.06 and 0.04 and C being 1.2 and
1.5 for LASSO and concrete dropout, respectively. This improvement observed with LASSO
when the number of features was increased might have been produced by the oversampling
based on SMOTE, which generated 77 new samples by a linear interpolation between
samples from the minority class. This process might have added correlation to the dataset,
making it more likely that LASSO could find features with a high degree of correlation.
Further analysis is planned to confirm this hypothesis. Regardless, concrete dropout is less
sensitive to these problems due to its nature. In any case, these results were achieved by
cross-validation, testing with around 48 samples per fold. In our previous study [55], using
the INAOE dataset, we showed that the traditional classification metrics were not reliable
due to the small amount of data in the test set, which might be a nonrepresentative subset
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to evaluate the model. On the other hand, the decrease observed in the performance of
concrete dropout when the number of features was increased seemed plausible due to the
implicit noise added by the extra features.

A previous study [18] was considered as a reference to quantify the performance of
the extracted features for the classification task. This reference study employed a stacking
classifier using gradient boost, XGBoost and random forest considering previously ranked
features as input: TCI, NTR_C4, NTR_C3, MPA_mean, LPA_mean, LPA_ET, LCA_mean,
and highest temperature. The best classification performance achieved was reported as
approximately 94% accuracy, precision, sensitivity, and F1 score. Using these proposed fea-
tures, the values reported in the present study, around 77% in the F1 score, are considerably
lower than those reported previously (see Table 6). However, although the definition of the
features was slightly modified and the classifier employed considerably differed; the same
input features exhibited a roughly 15% lower performance in comparison with the features
extracted in this study. This difference may be explained by the use of an extended dataset
as well as their proposed new labeling in the INAOE dataset for distinguishing between
mild, moderate, and severe cases in the diabetic foot domain, which was not tested in this
study. Another state-of-the-art work recently reported, employing the INAOE dataset,
extracting features by clusters instead of by angiosomes [56]. In addition, a new feature,
the cluster thermal index (CTI), was proposed, which provides a measure of temperature
deviation between a subject and the control group, considering not only the temperature
difference between the clusters but also the range of temperature in the control group. In
this case, several models were provided to classify healthy and diabetic subjects. Multi-
classification was employed to refine the stratification of diabetic patients using logistic
regression, SVM, and K-nearest neighbors. The results reported for the binary classification
with SVM are comparable to those reported here, the accuracy being approximately 86%.
Furthermore, using only 50 thermograms from the INAOE database and extracting texture
features, the reported accuracy of the SVM classifier was roughly 96% [57]. In addition,
employing a private dataset composed of 24 healthy and 36 diabetic subjects, a binary
classification using SVM achieved 95% accuracy [17]. These values are quite superior to
those reported in this paper. However, a true comparison cannot be drawn because the set
of features employed considerably differed.

Before feature extraction, our initial study focused on establishing a balanced dataset
of diabetic and healthy subjects by fusing a publicly unbalanced available dataset [41] with
a local dataset composed of healthy subjects. Furthermore, the preprocessing of the ther-
mograms was also carefully considered to extract the features previously reported [18,41].
Among set of features, considered within the state-of-the-art features, were the highest
temperature, TCI, HSE, ET, NRT, and several statistical variables such as the mean value,
being associated with the entire foot as well as some defined angiosomes (see Section
2.3). Notably, in the present stduy, these features were extracted by foot, and considered
separately, unlike previous studies in which an average between the R and L foot was
assumed due to the lack of specific information on the procedure. For this reason, the
number of features extracted is considerably much higher than in previous reports [18],
188 versus 37 features.

Of the most important state-of-the-art features, TCI is especially relevant. The TCI is
focused on providing a quantification of the thermal change, independent of the observed
distribution, and a difference of 1 ºC is considered enough to notice a significant difference
between the classes proposed [47]. In this study, reference values were not modified,
in comparison with the original study, to calculate the TCI values despite more healthy
subjects being considered in the extended dataset. Regardless, none of the features related
to TCI were considered relevant among all the implemented approaches or within those
features in coincidence.

Regarding NTR, the number of classes based on the thermogram temperatures was
extended to 10 because the range of relevant temperatures considered was increased from
18 to 37 ºC compared wtih the original study, which was from 25 to 35 ºC [48]. These
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modifications were motivated by, first, the exclusion of temperature values characteristic
of healthy patients, which were excluded in the original study to avoid the background,
because foot segmentation was not available. The private thermograms from healthy
volunteers, fused with the INAOE database for balancing purposes, showed that the
temperature distributions were below 28 °C for many subjects. Second, these private
thermograms were previously segmented; thus, excluding other heat sources within the
background was not required. As a result, we did not discard any NTR class as was
proposed in [48] for removing the background. A better-performing classifier was expected
by extending the temperature ranges. However, most of the features related to the NTR
were not considered relevant and, similar to that observed for the TCI, none were obtained
within the features in coincidence among all the approaches. Furthermore, according to
the F1 score, the best-performing approach was concrete dropout, and not a single feature
related to the NTR was among those considered relevant.

Opposite to that described above, in the present study, among those specially designed
features for DFU, only HSE and ETD seem to be relevant. Furthermore, as described, the
sole of the foot was divided into four different angiosomes, and their individual features
were extracted. The extraction demonstrated an unbalanced significance of the angiosomes
and, therefore, the division of the foot into angiosomes seemed a determinant factor for
feature extraction and played an important role in the analysis. In particular, the LPA
angiosome appeared as the most predictive, with more associated features than the other
angiosomes, followed by LCA (see Table A1).

Perhaps the extended dataset employed in this study, based on two different pop-
ulation samples, added a varying contribution of pathogenic factors that led to variable
outcomes [58]. The present study can be considered sort of a multicenter study, providing
a generalization factor for the classification task at hand, and therefore, the set of relevant
features may be significantly changed from previous studies. Further studies are required
with an increased dataset, composed of a balanced number of diabetic and healthy subjects,
and preferably from different population samples, in order to continue generalizing the
existing approaches. Furthermore, we will continue toward the study of the importance of
the different angiosomes as well as the exploration of new, interesting features that appear
within the state-of-the-art methods. Most importantly, the assessment of their predictive
value for classification will also be an area to explore in detail.

5. Conclusions

An extended dataset was employed to extract relevant features from infrared ther-
mograms to be used for DFU detection in order to classify whether a subject is healthy
or diabetic. For feature extraction, two classical approaches, LASSO and random forest,
were tested versus two innovative approaches based on DL, concrete and variational
dropout. The final set of features extracted substantially differed from those considered
within the state-of-the-art methods. The same SVM classifier employed to quantify the
performance of the new set of features extracted in this study provided approximately 15%
better performance than those features previously reported as relevant.
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Appendix A

Features in coincidence among the different feature-selection methods are listed,
according to angiosome, in the following table.

Table A1. Most relevant features extracted for all the approaches considered and listed according to
angiosome. The search for coincidence was restricted to the first 30 ranked features provided for each
approach. Features found up to a rank lower than 50 were considered.

Region Features

MPA R_MPA_HSE
L_MPA_skew

LPA

R_LPA_min
LPA_ETD
L_LPA_std
R_LPA_std

MCA R_MCA_std
L_MCA_std

LCA
R_LCA_std

R_LCA_kurtosis
LCA_ETD

Foot
Foot_ETD
L_kurtosis
R_kurtosis
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