Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119910
Título: Surrogate model based on ANN for the evaluation of the fundamental frequency of offshore wind turbines supported on jackets
Autores/as: Quevedo Reina, Román 
Álamo Meneses, Guillermo Manuel 
Padrón Hernández, Luis Alberto 
Aznárez González, Juan José 
Clasificación UNESCO: 332202 Generación de energía
330510 Cimientos
Palabras clave: Fatigue
Optimization
Reliability
Foundations
Offshore Wind Turbine, et al.
Fecha de publicación: 2023
Publicación seriada: Computers and Structures 
Resumen: The design of the support structure of offshore wind turbines (OWT) requires the dynamic characteriza-tion of the complete structural system, including the soil-foundation subsystem. To minimize resonance phenomena, the structural natural frequencies should be sufficiently apart from those that characterize the different loads. The obtention of natural frequencies can be a computationally expensive procedure, more so if dynamic soil-structure interaction (SSI) phenomena are included. In order to reduce the com-putational cost, a surrogate model based on Artificial Neural Networks (ANN) is proposed to estimate the fundamental frequency of the assembly formed by the wind turbine, the jacket support structure and the pile foundation. The training dataset is obtained by a finite element substructuring approach in which the dynamic SSI is incorporated through impedance functions obtained from a continuous model. The ability of the proposed ANN-based surrogate model to reproduce the influence that the main variables of the problem have on the fundamental frequency in a sufficiently precise way is shown by comparing its pre-dictions and the results of the finite elements model for new configurations. The high accuracy and sig-nificant computational cost reduction justify the use of the surrogate model in applications where a large number of evaluations is required.
URI: http://hdl.handle.net/10553/119910
ISSN: 0045-7949
DOI: 10.1016/j.compstruc.2022.106917
Fuente: Computers & Structures [ISSN 0045-7949], v. 274, 106917, (Enero 2023)
Colección:Artículos
Vista completa

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 22-dic-2024

Visitas

104
actualizado el 28-sep-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.