Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119799
Campo DC Valoridioma
dc.contributor.authorPodsiadło, Krzysztofen_US
dc.contributor.authorPaszyńska, Annaen_US
dc.contributor.authorOliver Serra, Alberten_US
dc.contributor.authorMaczuga, Pawełen_US
dc.contributor.authorPaszyński, Maciejen_US
dc.contributor.authorMontenegro Armas, Rafaelen_US
dc.date.accessioned2022-12-19T10:24:44Z-
dc.date.available2022-12-19T10:24:44Z-
dc.date.issued2022en_US
dc.identifier.isbn978-84-123222-9-3en_US
dc.identifier.urihttp://hdl.handle.net/10553/119799-
dc.description.abstractMesh refinement is a critical step in mesh adaptation. In this talk, we will present a hypergraphgrammar for the Rivara's longest-edge refinement algorithm [1] of unstructured triangular and tetrahedral meshes. We represent the computational mesh as a hypergraph, and then we construct all the necessary productions to express the mesh refinement steps. A first strategy for triangular meshes is presented in [3]; in this talk, a new graph structure is considered that allows to generalise to tetrahedral meshes. The hypergraph-grammar based algorithm automatically guarantees the validity and conformity of the generated mesh; it prevents from the generation of duplicated nodes and edges, and due to the Rivara’s algorithm it guarantees a minimum quality. The same hypergraph-grammar can be used to remove automatically all the hanging nodes from a given mesh. Due to its concurrent nature, using a hypergraph-grammar allows us to refine the mesh in parallel. Also, we can use partitioning algorithms developed for hypergraphs [2]. As an application of the technique, we will present a terrain mesh generator based on the hypergraph-grammar, and some applications to mesh adaptation in both two and three dimensions.en_US
dc.languageengen_US
dc.publisherInternational Center for Numerical Methods in Engineering (CIMNE)en_US
dc.sourceCongress on Numerical Methods in Engineering (CMN 2022), p. 466en_US
dc.subjectMateriasen_US
dc.titleA hypergraph-grammar for the longest-edge refinement of triangular and tetrahedral meshesen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceCongress on Numerical Methods in Engineering (CMN 2022)en_US
dc.description.firstpage466en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3783-8670-
crisitem.author.orcid0000-0002-4164-457X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOliver Serra, Albert-
crisitem.author.fullNameMontenegro Armas, Rafael-
crisitem.event.eventsstartdate12-09-2022-
crisitem.event.eventsenddate14-09-2022-
Colección:Actas de congresos
Adobe PDF (313,17 kB)
Vista resumida

Visitas

57
actualizado el 22-jun-2024

Descargas

23
actualizado el 22-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.