Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/119356
Title: Regulation of colony morphology and biofilm formation in Shewanella algae
Authors: Martín Rodríguez, Alberto Jonatan 
Villion, Katia
Yilmaz-Turan, Secil
Vilaplana, Francisco
Sjöling, Åsa
Römling, Ute
UNESCO Clasification: 32 Ciencias médicas
320103 Microbiología clínica
Keywords: Shewanella algae
Biofilm
Extracellular polymeric substances
Colony morphotypes
Issue Date: 2021
Journal: Microbial Biotechnology 
Abstract: Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.
URI: http://hdl.handle.net/10553/119356
ISSN: 1751-7907
DOI: 10.1111/1751-7915.13788
Source: Microbial Biotechnology [ISSN 1751-7907] v. 14 (3), p. 1183-1200, (Marzo 2021)
Appears in Collections:Artículos
Adobe PDF (8,06 MB)
Show full item record

SCOPUSTM   
Citations

3
checked on Nov 27, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.