Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/119155
Campo DC Valoridioma
dc.contributor.authorSanroma, Gerarden_US
dc.contributor.authorPeñate Sánchez, Adriánen_US
dc.contributor.authorAlquezar, Renéen_US
dc.contributor.authorSerratosa, Francescen_US
dc.contributor.authorMoreno-Noguer, Francescen_US
dc.contributor.authorAndrade-Cetto, Juanen_US
dc.contributor.authorGonzález Ballester, Miguel Ángelen_US
dc.contributor.editorYap, Pew-Thian-
dc.date.accessioned2022-11-03T09:43:46Z-
dc.date.available2022-11-03T09:43:46Z-
dc.date.issued2016en_US
dc.identifier.issn1932-6203en_US
dc.identifier.urihttp://hdl.handle.net/10553/119155-
dc.description.abstractWe present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods.en_US
dc.languageengen_US
dc.relation.ispartofPLoS ONEen_US
dc.sourcePLoS ONE [ISSN 1932-6203], v. 11 (1), art. e0145846 (2016)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.titleMSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problemen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.identifier.doi10.1371/journal.pone.0145846en_US
dc.identifier.pmid26766071-
dc.identifier.scopus2-s2.0-84955446333-
dc.identifier.isiWOS:000368459300009-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue1-
dc.relation.volume11en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.identifier.external67238725-
dc.utils.revisionen_US
dc.contributor.wosstandardYap, Pew-Thian-
dc.contributor.wosstandardYap, Pew-Thian-
dc.contributor.wosstandardYap, Pew-Thian-
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,201
dc.description.jcr2,806
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.erihplusERIH PLUS
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Artículos
Adobe PDF (8,03 MB)
Vista resumida

Citas SCOPUSTM   

2
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

2
actualizado el 24-nov-2024

Visitas

75
actualizado el 29-jun-2024

Descargas

16
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.