Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/119155
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Sanroma, Gerard | en_US |
dc.contributor.author | Peñate Sánchez, Adrián | en_US |
dc.contributor.author | Alquezar, René | en_US |
dc.contributor.author | Serratosa, Francesc | en_US |
dc.contributor.author | Moreno-Noguer, Francesc | en_US |
dc.contributor.author | Andrade-Cetto, Juan | en_US |
dc.contributor.author | González Ballester, Miguel Ángel | en_US |
dc.contributor.editor | Yap, Pew-Thian | - |
dc.date.accessioned | 2022-11-03T09:43:46Z | - |
dc.date.available | 2022-11-03T09:43:46Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 1932-6203 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/119155 | - |
dc.description.abstract | We present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | PLoS ONE | en_US |
dc.source | PLoS ONE [ISSN 1932-6203], v. 11 (1), art. e0145846 (2016) | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.title | MSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problem | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1371/journal.pone.0145846 | en_US |
dc.identifier.pmid | 26766071 | - |
dc.identifier.scopus | 2-s2.0-84955446333 | - |
dc.identifier.isi | WOS:000368459300009 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 1 | - |
dc.relation.volume | 11 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.external | 67238725 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | Yap, Pew-Thian | - |
dc.contributor.wosstandard | Yap, Pew-Thian | - |
dc.contributor.wosstandard | Yap, Pew-Thian | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 1,201 | |
dc.description.jcr | 2,806 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.erihplus | ERIH PLUS | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Colección: | Artículos |
Citas SCOPUSTM
2
actualizado el 24-nov-2024
Citas de WEB OF SCIENCETM
Citations
2
actualizado el 24-nov-2024
Visitas
75
actualizado el 29-jun-2024
Descargas
16
actualizado el 29-jun-2024
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.