Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/119155
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sanroma, Gerard | en_US |
dc.contributor.author | Peñate Sánchez, Adrián | en_US |
dc.contributor.author | Alquezar, René | en_US |
dc.contributor.author | Serratosa, Francesc | en_US |
dc.contributor.author | Moreno-Noguer, Francesc | en_US |
dc.contributor.author | Andrade-Cetto, Juan | en_US |
dc.contributor.author | González Ballester, Miguel Ángel | en_US |
dc.contributor.editor | Yap, Pew-Thian | - |
dc.date.accessioned | 2022-11-03T09:43:46Z | - |
dc.date.available | 2022-11-03T09:43:46Z | - |
dc.date.issued | 2016 | en_US |
dc.identifier.issn | 1932-6203 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/119155 | - |
dc.description.abstract | We present a novel approach for feature correspondence and multiple structure discovery in computer vision. In contrast to existing methods, we exploit the fact that point-sets on the same structure usually lie close to each other, thus forming clusters in the image. Given a pair of input images, we initially extract points of interest and extract hierarchical representations by agglomerative clustering. We use the maximum weighted clique problem to find the set of corresponding clusters with maximum number of inliers representing the multiple structures at the correct scales. Our method is parameter-free and only needs two sets of points along with their tentative correspondences, thus being extremely easy to use. We demonstrate the effectiveness of our method in multiple-structure fitting experiments in both publicly available and in-house datasets. As shown in the experiments, our approach finds a higher number of structures containing fewer outliers compared to state-of-the-art methods. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | PLoS ONE | en_US |
dc.source | PLoS ONE [ISSN 1932-6203], v. 11 (1), art. e0145846 (2016) | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.title | MSClique: Multiple Structure Discovery through the Maximum Weighted Clique Problem | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.identifier.doi | 10.1371/journal.pone.0145846 | en_US |
dc.identifier.pmid | 26766071 | - |
dc.identifier.scopus | 2-s2.0-84955446333 | - |
dc.identifier.isi | WOS:000368459300009 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 1 | - |
dc.relation.volume | 11 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.identifier.external | 67238725 | - |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | Yap, Pew-Thian | - |
dc.contributor.wosstandard | Yap, Pew-Thian | - |
dc.contributor.wosstandard | Yap, Pew-Thian | - |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
dc.description.sjr | 1,201 | |
dc.description.jcr | 2,806 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.erihplus | ERIH PLUS | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.