Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118981
Title: The shortest-edge duplication of triangles
Authors: Padrón Medina, Miguel Ángel 
Perdomo, Francisco 
Plaza, Ángel 
Suárez, Jose Pablo 
UNESCO Clasification: 120601 Construcción de algoritmos
1210 Topología
Keywords: Triangulations
Shortest edge
Finite element method
Triangle shape
Issue Date: 2022
Journal: Mathematics 
Abstract: We introduce a new triangle transformation, the shortest-edge (SE) duplication, as a natural way of mesh derefinement suitable to those meshes obtained by iterative application of longest-edge bisection refinement. Metric properties of the SE duplication of a triangle in the region of normalised triangles endowed with the Poincare hyperbolic metric are studied. The self-improvement of this transformation is easily proven, as well as the minimum angle condition. We give a lower bound for the maximum of the smallest angles of the triangles produced by the iterative SE duplication α=π6. This bound does not depend on the shape of the initial triangle.
URI: http://hdl.handle.net/10553/118981
ISSN: 2227-7390
DOI: 10.3390/math10193643
Source: Mathematics [ISSN 2227-7390], v. 10 (19), (october 2022)
Appears in Collections:Artículos
Adobe PDF (631,13 kB)
Show full item record

Page view(s)

60
checked on Mar 2, 2024

Download(s)

18
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.