Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118894
DC FieldValueLanguage
dc.contributor.authorCristóbal, Teresaen_US
dc.contributor.authorDe Blasio, Gabriele Salvatoreen_US
dc.contributor.authorQuesada-Arencibia, Alexisen_US
dc.contributor.authorPadrón, Gabinoen_US
dc.contributor.authorAlayón, Franciscoen_US
dc.contributor.authorGarcía, Carmelo R.en_US
dc.date.accessioned2022-10-17T15:04:46Z-
dc.date.accessioned2022-10-17T15:14:32Z-
dc.date.available2022-10-17T15:04:46Z-
dc.date.available2022-10-17T15:14:32Z-
dc.date.issued2022en_US
dc.identifier.issn1868-5137en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/118894-
dc.description.abstractMillions of people use public transport systems daily, hence their interest for the epidemiology of respiratory infectious diseases, both from a scientific and a health control point of view. This article presents a methodology for obtaining epidemiological information on these types of diseases in the context of a public road transport system. This epidemiological information is based on an estimation of interactions with risk of infection between users of the public transport system. The methodology is novel in its aim since, to the best of our knowledge, there is no previous study in the context of epidemiology and public transport systems that addresses this challenge. The information is obtained by mining the data generated from trips made by transport users who use contactless cards as a means of payment. Data mining therefore underpins the methodology. One achievement of the methodology is that it is a comprehensive approach, since, starting from a formalisation of the problem based on epidemiological concepts and the transport activity itself, all the necessary steps to obtain the required epidemiological knowledge are described and implemented. This includes the estimation of data that are generally unknown in the context of public transport systems, but that are required to generate the desired results. The outcome is useful epidemiological data based on a complete and reliable description of all estimated potentially infectious interactions between users of the transport system. The methodology can be implemented using a variety of initial specifications: epidemiological, temporal, geographic, inter alia. Another feature of the methodology is that with the information it provides, epidemiological studies can be carried out involving a large number of people, producing large samples of interactions obtained over long periods of time, thereby making it possible to carry out comparative studies. Moreover, a real use case is described, in which the methodology is applied to a road transport system that annually moves around 20 million passengers, in a period that predates the COVID-19 pandemic. The results have made it possible to identify the group of users most exposed to infection, although they are not the largest group. Finally, it is estimated that the application of a seat allocation strategy that minimises the risk of infection reduces the risk by 50%.en_US
dc.languageengen_US
dc.relationProyecto COVID19-03en_US
dc.relation.ispartofJournal of Ambient Intelligence and Humanized Computingen_US
dc.sourceJournal of Ambient Intelligence and Humanized Computing [ISSN 1868-5137], (Octubre 2022)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject.otherContact patternsen_US
dc.subject.otherCovid-19en_US
dc.subject.otherData miningen_US
dc.subject.otherIntelligent transport systemsen_US
dc.subject.otherNetwork epidemiologyen_US
dc.titleData mining methodology for obtaining epidemiological data in the context of road transport systemsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12652-022-04427-2en_US
dc.identifier.scopus85139248734-
dc.contributor.orcid0000-0002-9441-7127-
dc.contributor.orcid0000-0002-8313-5124-
dc.contributor.orcid0000-0002-6233-567X-
dc.contributor.orcid0000-0002-5573-1156-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-1433-3730-
dc.contributor.authorscopusid56495304700-
dc.contributor.authorscopusid13006053800-
dc.contributor.authorscopusid57914405100-
dc.contributor.authorscopusid22986240200-
dc.contributor.authorscopusid6506717943-
dc.contributor.authorscopusid7401486323-
dc.identifier.eissn1868-5145-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.observacionesProyecto de Investigación: Research was supported by the University of Las Palmas de Gran Canaria (ULPGC) through ProjectCOVID19-03en_US
dc.description.numberofpages23en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr0,905-
dc.description.jcr3,662-
dc.description.sjrqQ1-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds10,5-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-6233-567X-
crisitem.author.orcid0000-0002-8313-5124-
crisitem.author.orcid0000-0002-5573-1156-
crisitem.author.orcid0000-0002-7285-9194-
crisitem.author.orcid0000-0003-1433-3730-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameDe Blasio, Gabriele Salvatore-
crisitem.author.fullNameQuesada Arencibia, Francisco Alexis-
crisitem.author.fullNamePadrón Morales, Gabino-
crisitem.author.fullNameAlayón Hernández,Francisco Javier-
crisitem.author.fullNameGarcía Rodríguez, Carmelo Rubén-
Appears in Collections:Artículos
Adobe PDF (3,15 MB)
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 24, 2024

Page view(s)

102
checked on Dec 18, 2022

Download(s)

4
checked on Dec 18, 2022

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.