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Abstract
Millions of people use public transport systems daily, hence their interest for the epidemiology of respiratory infectious 
diseases, both from a scientific and a health control point of view. This article presents a methodology for obtaining epi-
demiological information on these types of diseases in the context of a public road transport system. This epidemiological 
information is based on an estimation of interactions with risk of infection between users of the public transport system. The 
methodology is novel in its aim since, to the best of our knowledge, there is no previous study in the context of epidemiol-
ogy and public transport systems that addresses this challenge. The information is obtained by mining the data generated 
from trips made by transport users who use contactless cards as a means of payment. Data mining therefore underpins the 
methodology. One achievement of the methodology is that it is a comprehensive approach, since, starting from a formalisa-
tion of the problem based on epidemiological concepts and the transport activity itself, all the necessary steps to obtain the 
required epidemiological knowledge are described and implemented. This includes the estimation of data that are generally 
unknown in the context of public transport systems, but that are required to generate the desired results. The outcome is useful 
epidemiological data based on a complete and reliable description of all estimated potentially infectious interactions between 
users of the transport system. The methodology can be implemented using a variety of initial specifications: epidemiological, 
temporal, geographic, inter alia. Another feature of the methodology is that with the information it provides, epidemiologi-
cal studies can be carried out involving a large number of people, producing large samples of interactions obtained over 
long periods of time, thereby making it possible to carry out comparative studies. Moreover, a real use case is described, in 
which the methodology is applied to a road transport system that annually moves around 20 million passengers, in a period 
that predates the COVID-19 pandemic. The results have made it possible to identify the group of users most exposed to 
infection, although they are not the largest group. Finally, it is estimated that the application of a seat allocation strategy that 
minimises the risk of infection reduces the risk by 50%.
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1  Introduction

One of the main routes for the transmission of infectious 
diseases is human-to-human contact. Of these, respiratory 
diseases affect thousands of people every year. COVID-19 
is an example of such a disease, caused by a pathogen with 
a high rate of propagation, which is why the World Health 

Organization (WHO) declared a global pandemic in March 
2020. The WHO1 states that any situation involving close 
proximity between people for a long period of time increases 
the risk of transmission. In the context of a health crisis 
caused by this type of disease, it is important to understand 
the patterns of social contact or proximity between people, 
as this information is used to implement effective epidemio-
logical control measures (Hoang 2019).

1  World Health Organization (2021) Coronavirus disease (COVID-
19): How is it transmitted?
  https://​www.​who.​int/​news-​room/q-​a-​detail/​coron​avirus-​disea​se-​
covid-​19-​how-​is-​it-​trans​mitted. Accessed August 2021.
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The mission of transport systems is to facilitate the mobil-
ity of people; millions of people around the world move 
through their infrastructures every day.2 For this reason, such 
systems have attracted scientific interest in the epidemiology 
of airborne diseases (Troko 2011). This article describes 
a methodology for obtaining epidemiologically relevant 
data, as well as the patterns that these data follow, to help 
both transport operators and health authorities to develop 
effective health control measures based on the usage data 
of an intercity road transport system. The ultimate goal of 
the methodology is to provide epidemiological data that 
will help health authorities to implement effective epide-
miological control measures such as the identification of 
target population groups in vaccination campaigns based on 
the mobility and contact patterns of these groups, or non-
pharmacological measures such as travel restrictions. In the 
context of road transport systems, and in line with the points 
made by (Tirachini 2020) on the challenges that transport 
systems need to address in order to make them safer from 
an epidemiological point of view, these data would also be 
useful for transport operators and transport agencies when 
making decisions to reduce the risk of infection among pas-
sengers. To achieve this goal, a data mining methodology 
was developed to analyze the millions of data records that 
are generated by the trips made by its users.

Since the beginning of this century and especially with 
the emergence of new infectious respiratory diseases, such 
as SARS and COVID-19, the use of data analytics in systems 
based on data mining and big data has been proposed as a 
useful resource to help in predicting, tracking, monitoring 
and decision-making in the epidemiological control of this 
type of disease (Corsi 2021). The methodological proposal 
presented herein belongs to this general framework. In a 
more specific context of transport systems and epidemiol-
ogy, there are two methodological precursors to this pro-
posal. The first is the work of Eubank (2004) which pre-
dicted the propagation of an infectious disease and analysed 
the impact that different epidemiological control strategies 
would have on a population, using mobility data to generate 
a graph of the co-presence of people in the population under 
analysis and to run simulations. The second precursor is the 
work of Goscé (2018) which, by analysing the data provided 
by the contactless card-based payment system used by users 
of a metropolitan transport network, analysed their mobility 
with the aim of identifying the relationship between crowded 
spaces in the transport network and the spread of the disease. 
The proposed methodology combines these two approaches. 
In our particular study, we make three main contributions:

•	 The first is that, to the best of our knowledge, there are no 
previous published works on obtaining epidemiologically 
relevant data and their patterns in the context of road 
transport systems, or if there are, they are very limited.

•	 Second, the proposed methodology. It is a novel proposal 
intended to systematically obtain data that are relevant 
for epidemiological monitoring. Starting with a formali-
zation of the problem, based on concepts related to epide-
miology and transport activity, the methodology obtains 
these data by estimating the number of close contacts 
between passengers in the transport system.

•	 And third, the findings provide information that can be 
used for epidemiological control in pandemic situations. 
This is particularly relevant because urban dwellers 
spend 7% of their time travelling on transport systems 
(Jenkins 1992).

In addition to this introduction, this paper contains five 
more sections. The following section presents work related 
to the topics addressed in this paper. The methodology is 
then described in the third section. The fourth section pre-
sents the results and discussion obtained by applying the 
proposed methodology to a real case of a road transport 
system. The limitations of the study is presented in section 
fifth and finally, the sixth section presents the conclusions.

2 � Related works

Network theory is used in many fields of knowledge, includ-
ing epidemiology. This is because interactions between peo-
ple can be modelled by means of a network called a contact 
network, where contact – in this field – is understood to 
mean interaction between two or more people that may lead 
to the transmission of a disease. There is extensive litera-
ture on the use of network theory in epidemiology that can 
be organized into two types: studies on the use of inferred 
contact networks, based on social contact surveys or human 
behavior simulations, and those on the use of contact net-
works generated from proximity sensor data (Danon 2010). 
The methodologies followed by all these studies have the 
same objective, which is to obtain data useful for model-
ling the dynamics of infectious disease, using mathematic 
models such as those based on the next-generation matrix 
(Diekmann 1990) or the compartmental SIR (suscepti-
ble–infected–recovered) model (Kendall 1956), or to evalu-
ate the impact of epidemiological control measures. These 
data are: frequency of contacts, duration, location of con-
tacts, contact network, and contact matrices to represent the 
contact network between different clusters of participants. 
In this section, three types of studies are reviewed: on the 
use of inferred contact networks, on the use of contact net-
works generated from proximity sensor data and finally, on 

2  International Transport Forum (2022), Passenger transport, ITF 
Transport Statistics (database), https://​doi.​org/​10.​1787/​g2g55​57f-​en. 
Accessed July 2022.

https://doi.org/10.1787/g2g5557f-en
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the role of transport systems in the transmission of this type 
of disease. Because they do not coincide with the aims of 
the research presented in this article, we have not considered 
studies on the tracing of contacts for epidemiological control 
in health crisis situations.

2.1 � Studies based on inferred contact networks

A methodology for obtaining patterns of social contacts 
between individuals is to use census data, assuming that 
they reflect the distribution of groups in the population and 
household size (Ferguson 2005; Longini 2005). A more 
realistic methodology is to derive these patterns from data 
obtained from surveys of the populations under study. Wall-
inga (2006) presented a study on how to obtain transmission 
parameters by age group from a social contact survey on the 
conversational partners of the participants. The survey was 
conducted by face-to-face interviews in Utrecht, the Nether-
lands, in 1986, where 3084 were invited, 2106 completed a 
questionnaire and 1813 met the criteria for further analysis. 
A survey-based study involving 7297 participants from 8 
European countries is presented in Moosong (2008). The 
results of this study show that the patterns of social contacts 
in the different countries were very similar to each other, 
and that social contact tended to take place between peo-
ple of the same age, especially in the population groups of 
schoolchildren and young adults. This study was conducted 
in the framework of the European POLYMOD project. With 
a view to building on the contact patterns obtained in the 
POLYMOD project, the BBC Pandemic project (Klepac 
2018) was developed in the United Kingdom and reported 
social contact information from 40,177 participants who 
completed the study, out of the 86,000 participants initially 
recruited. A considerable number of studies were conducted 
along the same lines in specific geographical settings. A 
review of these studies is presented in Hoang (2019). As a 
result of this comprehensive review, the authors proposed 
various recommendations that should be taken into account 
for future survey-based work.

Simulation of human behavior is another alternative tech-
nique that has been used in studies on the use of networks in 
epidemiology. In order to better predict outbreaks of SARS, 
using different mathematical models, in Meyers (2005) 
the contact network of an urban population was obtained 
through a stochastic simulation of the behavior of the people 
in the population, where contacts occur randomly in homes, 
schools, workplaces, hospitals and other public places. Sto-
chastic simulation of the behavior of individuals belong-
ing to large populations was also used in Chao (2010). The 
researchers found that the dynamics of influenza epidem-
ics modelled using the contact network generated from the 
simulation was consistent with epidemiological data from 
the 1957–1958 and 2009 influenza pandemics.

2.2 � Studies based on contact data collected 
via proximity sensors

The following is a review of literature on contact networks 
generated in different contexts of social relationships, using 
different types of sensors. In Isella (2011a), contact data 
from two social events were analyzed: a scientific conference 
and a museum exhibition. The contact data were obtained 
from proximity records provided by RFID tags on badges 
worn by participants at these events. At the scientific con-
ference, 100 people participated, registering around 10,000 
contacts, and at the exhibition, 14,000 people participated, 
registering more than 230,000 contact records. A framework 
for recording proximity contacts in different social contexts 
is presented in Cattuto (2010). The technology used in this 
proposal is RFID and its objective is to have a scalable, high-
resolution environment that generates the contact network 
in different types of social contexts. This paper presents the 
results obtained by using the proposed framework at three 
different social events: an exhibition in which 25 people par-
ticipated and 8700 contacts were recorded, and two scientific 
conferences. In the first, 575 people participated and 17,000 
contacts were recorded, and in the second, 405 people par-
ticipated and 60,000 contacts were recorded. Salathé (2010) 
describes how a network of proximity interactions (up to 
3 m) was obtained in a high school. To obtain the close prox-
imity records, the researchers used a mobile sensor network 
based on TelosB motes. The number of contacts recorded 
was 2,148,991 and 788 people participated in the study, cov-
ering 94% of the entire school community, and the study was 
conducted in the month of January. Isella (2011b) describes 
a study conducted to obtain a network of close contacts (up 
to 1.5 m) between patients, healthcare staff and caregivers 
in a pediatric ward. The technology used in this study was 
RFID, with each participant provided with an RFID tag. The 
number of contacts recorded was 16,000, obtained during 
7 days in November 2009, the peak period of the 2009 A/
H1N1 influenza pandemic. In Stehlé (2011), a study was 
conducted to obtain a network of close contacts between stu-
dents and teachers in a primary school. The study involved 
232 children and 10 teachers and recorded their close con-
tacts (up to 1.5 m) on 1 and 2 October 2009. The technol-
ogy used was RFID and a total of 77,602 contact events 
were recorded. Stopczynski (2015) analyzes how proximity 
between people affects the spread of an infectious disease, 
using an SIR (susceptible-infected-recovered) model. The 
authors used two networks: one of short-distance interac-
tions (≤ 1 m) and one of long-distance interactions (≤ 10 m). 
Around 500 students from the Technical University of 
Denmark participated in this study, which used Bluetooth 
technology to record the proximity between them. Génois 
(2019) analyzed the properties of contact networks at dif-
ferent spatial resolutions, studying the differences between 
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real face-to-face contact networks and face-to-face contact 
networks estimated from co-presence data. Finally, in the 
context of the COVID-19 pandemic, Kumar (2021) and 
Barnawi (2021) proposed systems based on unmanned aerial 
vehicles (UAVs) equipped with image sensors for estimat-
ing the distance between people in densely crowded places.

2.3 � Epidemiological studies in the context 
of transport systems

This section reviews epidemiological studies that have used 
data from different transport systems as their main source 
of data. The aim of these studies is to analyze the role that 
transport systems have played in the spread of an infectious 
respiratory disease. In Eubank (2004), an agent-based simu-
lation is used to model the movements of 1.5 million people 
in Portland, Oregon, USA, between 180,000 different loca-
tions. The goal of the simulation was to detect the pres-
ence of two people in the same place at the same instant in 
time, to generate a static network of contacts, and to predict 
the number of contacts that occur at each location. Colizza 
(2006) studies the role of passenger flows in air transport 
networks in predicting the spread of a pandemic. Merler 
(2010) analyzes the evolution of an influenza epidemic on a 
European scale, using data from the European railway sys-
tem as a source for modelling long-distance mobility, explor-
ing the role of population heterogeneity and human mobil-
ity in the spread of the pandemic. Balcan (2009) analyzes 
the role of different transport networks in the spread of an 
epidemic when their mobility flows are integrated and they 
operate at different scales. This paper analyzes the inter-
play between small-scale mobility flows in ground transport 
and large-scale mobility patterns in air transport in shaping 
the spatiotemporal patterns of a global influenza epidemic. 
Cooley (2011) presents a computer simulation for analyz-
ing the evolution of an influenza epidemic in New York, 
based on an SEIR (susceptible–exposed–infectious–recov-
ered) influenza disease transmission dynamics model, using 
epidemiological parameters obtained from the 1957 to 1958 
influenza pandemic, and using the subway ridership data 
of 7,847,465 virtual people. Information on each person 
included sex, age, employment status, occupation, income, 
location of residence and members of the household. The 
results showed that if a flu epidemic with the same char-
acteristics as the 1957–1958 epidemic were to occur, 4% 
of the infections would occur on the subway, compared to 
30% at home, 37% at work (or school) and 33% in com-
munity activities outside the home and work (or school). 
Goscé (2018) presents a study on the relationship between 
the crowded environments of public transport systems and 
the spread of airborne diseases. The study is based on mobil-
ity data from the London Underground, specifically trip data 
generated by its passengers using an automatic payment 

system based on a contactless card. These data were used to 
study crowd dynamics at different stations. The model used 
to estimate the spread of the disease takes into account the 
route followed by each passenger, with the probability of 
being infected varying depending on the estimated level of 
crowding in the different places through which the passenger 
passes. The results of this study show that, in boroughs with 
a higher incidence of this type of illness, residents spend 
more time in the Underground. The authors therefore sug-
gest that research is needed to quantify the role of public 
transport use in the transmission of this type of illness.

In the specific context of the COVID-19 pandemic, Luo 
(2020) describes a contact-tracing study on an outbreak in 
Hunan Province, China, involving 10 passengers on two 
public transport buses. Based on the limitations and results 
of this study, the authors suggest that COVID-19 infections 
are caused by aerosol transmission due to poor ventilation 
in the vehicles. Considering the results of this publication, 
to reduce the risk of infection, a series of measures should 
be taken, such as: disinfecting vehicles regularly, ventilat-
ing vehicles adequately, opening windows when possible, 
and transport users wearing face masks and maintaining 
hand hygiene. Shen (2020) presents a case of community 
transmission among attendees of a religious event in Zhe-
jiang province (China). In this case, 28 of the 68 people 
affected took the same bus to the event. The authors suggest 
that the cause of this outbreak was airborne transmission 
facilitated by poor ventilation in the vehicle. A study on the 
risk of COVID-19 transmission among train passengers in 
China is presented in Hu (2021). In this study, the authors 
developed a model that quantifies the risk of transmission 
among high-speed train passengers on the basis of travel 
time and distance between passengers. They used data from 
2334 COVID-19 patients and the 72,093 close contacts who 
shared the same journey with them, from 19 December 2019 
to 6 March 2020. The results of this study show that the 
risk varies significantly depending on travel time and spatial 
distance between passengers. In conclusion, the authors rec-
ommend the implementation of measures such as: increasing 
the distance between passenger seats, reducing passenger 
density, adequate ventilation and filtration of air, the wear-
ing of face masks and the use of personal hygiene practices. 
Severo (2021) analyzes the role that the urban rail system in 
the city of Lisbon has played in the transmission of COVID-
19 in said city. The authors analyzed the use of this infra-
structure by the inhabitants of the city, together with data 
on confirmed SARS-CoV-2 infections in the period from 
2 March to 5 July 2020 and, using geographic information, 
linked the cases to the nearest train stations. The authors 
concluded that there is no consistent relationship between 
proximity to train stations and the spread of the disease, 
suggesting that factors such as socioeconomic deprivation 
are the determinants of infection dynamics.
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2.4 � Limits of the literature and main contributions

With regard to studies based on inferred contact networks 
using surveys as a data source, the comprehensive and sys-
tematic review by (Hoang 2019) outlines the following con-
siderations. One challenge to be addressed is that of select-
ing the most suitable sample of people to participate in these 
studies. It is important that the initial sample is bias-free 
and representative of the target population. In this type of 
study, participants typically number around one thousand 
and data are manually recorded in retrospective surveys. It is 
therefore necessary to consider the difficulty for participants 
to recall all the details of the contacts they have had with 
the required precision. This problem is particularly acute 
when it comes to recording casual close contacts that do not 
involve physical contact or verbal exchanges. Furthermore, 
if the aim is to analyse the variability of contacts within the 
same population group, participants would need to report 
on their contacts over a considerable period of time, which 
is also problematic. Finally, as egocentric sampling is used 
in this type of study, certain characteristics of the resulting 
contact network cannot be estimated.

The main limitation of methodologies that infer contact 
networks through simulation is that their inferences are 
based on knowledge of how different population groups are 
spatially structured at different scales (families, villages, cit-
ies, metropolitan areas and regions) and what the mobility of 
people is like at these different scales. Therefore, in this type 
of methodology, the inferred networks are designed to rep-
resent large-scale interactions, providing only very general 
information about contacts between individuals.

With regard to work based on the use of proximity sen-
sors, one constraint faced by this type of study is the diffi-
culty of deploying the technological infrastructure required 
to conduct a study involving a large number of people, over 
a long period of time and covering a wide geographical area. 
Another problem that arises in this type of work is under-
recording due to environmental factors that hinder signal 
propagation or improper use of the sensors by participants. 
Conversely, improper use of the sensors by participants can 
also cause an overrecording problem. Finally, in this type 
of study, the definition of contact refers only to the distance 
between the people involved, and it is not possible to record 
whether there has been a conversation or physical contact.

The proposal made in this paper is a case of a hybrid 
methodology developed for the analysis of close contacts 
that occur in the specific context of intercity public road 
transport systems. It defines close contact in terms of the dis-
tance separating the people involved in the contact, as used 
in methodologies based on proximity contacts. Using data 
commonly used in transport systems—in which contactless 
card-based payment systems play a major role—and data 
mining, it is able to generate the network of close contacts 

of passengers who have travelled together in the same public 
transport vehicle. These close contacts are obtained by simu-
lations based on seat allocation strategies. Therefore, it also 
falls into the category of methodologies that use simulations 
to infer the network of contacts.

In keeping with its principles of operation, the contacts 
can be studied in detail, as they have all the required attrib-
utes: frequency of contact, duration, location, time of occur-
rence and relevant information on the persons generating the 
contacts. As the data from which the contacts are generated 
are obtained automatically and continuously, it is possible 
to carry out studies involving a large number of participants, 
yielding samples with a large number of contacts. Thanks 
to the processes for validating the integrity of the collected 
data, the contact information is not only complete, but also 
reliable. It follows, therefore, that the challenge posed by the 
methodologies described in the review of related work—that 
of having a significant sample of close contacts with reliable 
data and a large number of participants—is solved by the 
proposed methodology. Also, another common limitation 
solved by the proposed methodology is that it allows for 
the continuous study of close contacts for the purpose of 
analysing their variability. In the specific context of method-
ologies based on the use of proximity sensors, the proposed 
methodology, by taking elements used by public transport 
users on a daily basis, does not require specific technologi-
cal deployments to conduct the research. Therefore, it ena-
bles users across the entire transport network to participate 
naturally, while also preventing errors in the data due to 
improper use of the devices used for data acquisition. In the 
specific context of simulation-based studies, the proposed 
methodology supports precise studies on individual close 
contacts between people participating in the study, an aspect 
that is not addressed by related works in this type of study. 
Finally, in the context of work on epidemiology in transport 
systems, the proposed methodology is original in terms of 
both purpose and design.

Table 1 shows a summary of the relevant characteristics 
of the methodologies that are generally used and that have 
been presented and of the results obtained by applying them 
to obtain contact networks.

3 � Methodology

In this section, we present a methodology based on data 
mining designed to obtain data of epidemiological interest 
and the patterns they follow from mobility data generated 
in a road transport system. The data of interest are obtained 
on the basis of the definition of close contact established 
by national and international health agencies for COVID-
19, which will be presented and formalized in the follow-
ing section describing the formal model adopted by the 
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methodology. Specifically, in the context of road transport 
systems, the data of interest relate to the frequency with 
which regular users of the transport system travel in the 
same vehicle, and the duration and distance over which 
these events occur; the study looks at how these aspects vary 
according to the age of the users. From these data, estimates 
can be made of the interactions that occur between users of 
the transport system that can lead to contagion, obtaining 
the patterns of these interactions according to the age groups 
of the users. Therefore, and as expressed in the section on 
related work, the data obtained are of interest for epidemio-
logical models that require data that represent the patterns of 
contacts between people belonging to different age groups, 
i.e. studies that try to establish “who infects whom” (Hoang 
2019). Implementation of the methodology produces a 
framework for obtaining this type of information according 
to epidemiological and transport system parameters.

3.1 � Formalization

In a model of the spread of a respiratory infectious disease 
based on social contact, it is assumed that the number of 
potentially infectious contacts between two different groups 
of people is proportional to the number of social contacts 
between people in those groups, and that this proportion is 
determined by a proportionality factor, q, which measures 
the infectivity of the disease, the value of which is disease-
specific (Wallinga 2006).

The next generation matrix M’ is a matrix used to esti-
mate how an epidemic will spread based on the contacts 
that occur between different population groups. Matrix M’ is 
obtained from contact matrix M. In matrix M, each element 
mij represents the average number of people from group i 
who have been in contact with a person from group j. In gen-
eral, the reciprocity principle is assumed for these contacts. 
This means that if cij represents the total number of contacts 
between people from group i and people from group j, and 
cji is the total number of contacts between people from group 
j and people from group i, then cij = cji. If wi is the number 
of people in group i and wj is the number of people in group 
j, then mij = cij/wj and mji = cji/wj. Finally, if q is the propor-
tional infectivity factor of a disease, matrix M’ is obtained 
by the expression M’ = qM, so nij = qmij, where nij is an ele-
ment of the M' matrix.

If the age of the people in a population is known, and they 
are grouped by age intervals, and matrix M resulting from 
the contacts between people from the different age groups is 
available, then for an infectious disease with a known infec-
tivity factor q, it is possible to estimate how many people 
in the different age groups will be infected by a sick person 
in a given age group. This estimation is performed using 
matrix M’ and vector X0 which represents the number of 
people who are initially infected in each group. The result of 

the expression Xi = (M’)iX0 represents the estimated number 
of people in each age group who will be infected at the i-th 
iteration of the spread of a disease (Moosong 2008).

Assuming that all age groups are equally susceptible to 
infection, the relevant property of matrix M’ is that its domi-
nant eigenvalue matches the basic reproduction number R0 
mentioned above. The dominant eigenvector of M’ indicates 
the level of contribution of each age group to the spread of 
the disease (Diekmann 1990).

In the context of respiratory infectious diseases, and in 
the specific context of the COVID-19 pandemic, in general 
and at the community level, a close contact is considered 
to be any person who has been within 2 m of an infected 
person for a total cumulative time of 15 min or more over a 
24-h period.3 Based on this definition and in line with the 
epidemiological studies described in the previous section, 
the objective of the proposed methodology is to estimate 
the number of close interactions between passengers in an 
intercity road transport system. The term interaction and not 
contact is used because, according to the above definition of 
close contact, it entails an interaction with an infected person 
and no personal passenger data is handled in the proposed 
methodology. In the formal framework of the methodology, 
interaction is defined as an event consisting of two people 
being within two meters of each other continuously for a 
period of time; the duration of the interaction is defined as 
that period of time. When one or more interactions with a 
cumulative duration of more than 15 min occur between 
two people in a 24-h period, then a close interaction event 
occurs between them. Considering the definition of close 
interaction, the objective of the proposed methodology is to 
obtain useful epidemiological information on interactions 
between passengers in a road transport system, as well as 
to provide information on passengers travelling in the same 
vehicle during an interval of time. This is referred to as co-
presence of users.

Table 2 summarizes the notation used in the formalization 
described below.

Graph theory has been used for different purposes and 
with success in studies in the field of intelligent transport 
systems (Aleksander 2020; Henning 2017). By modelling 
the road network as a spatial graph, it is possible to for-
malise the routes that public transport vehicles can take. 
From this physical representation of the transport network, 
other more conceptual graphs associated with transport 
activity are constructed at higher levels. In addition, for-
mal mathematical graph theory can be applied to solve 

3  Centers for Disease Control and Prevention. Appendices: Appendix 
A Glossary of Key Terms.
  https://​www.​cdc.​gov/​coron​avirus/​2019-​ncov/​php/​conta​ct-​traci​ng/​
conta​ct-​traci​ng-​plan/​appen​dix.​html#​conta​ct. Accessed 27 May 2021.

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html#contact
https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tracing/contact-tracing-plan/appendix.html#contact
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common problems in transport operations, such as optimal 
route design, both from the point of view of distance and 
estimated travel times, operating costs and detection of 
bottlenecks in the transport network (Qu 2019).

Thus, the transport network was formalised on the first 
level of the formal framework by means of a graph, G:

where:
N represents the set of nodes in the transport network 

where passengers board or alight from vehicles, N = {ni}, 
and subscript i is the point identifier.

A represents the set of arcs linking two nodes, A = {ai}, 
where subscript i is the arc identifier.

Each arc represents the direct path taken by a public 
transport vehicle carrying passengers between an origin 
node and a destination node. Therefore, G is a directed 
graph. The next entity that is formalized at this level is 
the concept of a route. A route is defined as the path taken 
by vehicles carrying passengers. Considering graph G, a 
route is defined as an ordered sequence of arcs (ai, …, an), 
where ai … an ∈ A. The set of routes taken in the transport 
network is represented by R, R = {ri}, where subscript i 
is the route identifier. A route segment ri is defined as an 
ordered sequence of arcs (ap, …, aq) included in route ri.

For the purposes of the methodology, the type of opera-
tion that is of interest is the completion of a route by a 

G = G(N,A)

vehicle to transport passengers, called a vehicle journey. 
In the proposed notation, the set of vehicle journeys that 
are completed in the transport network is represented by J, 
J = {Ji}. Ji represents the set of vehicle journeys that con-
sist of transporting passengers on the route identified by 
subscript i. Alternatively, the set of vehicle journeys, irre-
spective of the route followed, that are completed in time 
period T is represented by the notation JT. The set of vehi-
cle journeys consisting of transporting passengers on route 
i during time period T is represented by JT,i. If, instead of 
time period T, we have moment of time t, then Jt,i repre-
sents the set of vehicle journeys on route i for which the 
start time is t. Finally, if v identifies a vehicle, then jt,i,v 
represents a vehicle journey on route i, which begins at 
time t and which is performed by vehicle v. The trip taken 
by a passenger on vehicle journey jt,i,v is defined as the 
route segment (ap, …, aq) that the vehicle has travelled 
while the passenger is in the vehicle. The duration of the 
trip the passenger has made is the time elapsed since the 
passenger boards the vehicle at the origin node of directed 
arc ap and alights at the destination node of directed arc aq.

Finally, to define the type of event in the vehicles, the 
concepts of co-presence event, interaction event and close 
interaction event between two users, p1 and p2, of the trans-
port system were formalized according to whether the fol-
lowing three conditions are fulfilled:

•	 C1. Both have travelled on the same vehicle journey, jt,i,v.

Table 2   Notation of the formal 
model used by the methodology

Notation Meaning

ni Node on the transport network. Each node is associated with a stop. Subscript i is an integer 
value that uniquely identifies the node

N Set of transport network nodes
ai Transport network arc. Each arc directly links two nodes of set N of the transport network
A Set of arcs on the transport network directly linking two nodes
G(N,A) Directed graph representing the transport network
ri Route on the transport network. Subscript i is an integer value that uniquely identifies the route
R Set of defined routes on the transport network
Ji Vehicle journey on route i
J Set of vehicle journeys on all defined routes on the transport network
T Period of time
t Moment of time in period T
JT Set of vehicle journeys that have been completed in time period T
JT,i Set of vehicle journeys on route i that have been completed in period T
Jt,i Set of vehicle journeys on route i that started at moment t
v Public transport vehicle
Jt,i,v Vehicle journey on route i that started at moment t carried out by vehicle v
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•	 C2. The trips made by p1 and p2 on jt,i,v have at least one 
common arc.

•	 C3. Passengers p1 and p2 have been less than 2 m apart 
during the path of the common arcs of the trips of p1 and 
p2 in jt,i,v.

And from these, the events are defined as.

•	 Co-presence event between p1 and p2: if conditions C1 
and C2 are met.

•	 Interaction event between p1 and p2: if conditions C1, C2 
and C3 are met.

•	 Close interaction event: if one or more interaction events 
occur within a 24-h interval between passengers p1 and 
p2 and the cumulative duration of these interactions 
exceeds 15 min.

Formally, in an environment in which co-presence inter-
actions and close interactions occur, as is the case of pub-
lic transport vehicles in this formal model, the co-presence 
interaction network and the close interaction network have 
some common structural and statistical features, the former 
being much denser than the latter (Génois 2018).

Given the definition of the concepts of co-presence inter-
action and close interaction, in an epidemic scenario where 
the main form of transmission is through close contacts, 
the number of close interactions that occur is an indicator 
of infection risk in the transport system. In the case where 
aerosols are the primary mode of transmission, the number 
of co-presence interactions is an indicator of infection risk. 
It is therefore of interest to have an environment in which 
this number can be estimated and to assess how this number 
is affected by various measures that transport operators can 
take to reduce it.

Figure 1 illustrates the application of this notation to an 
example route and the vehicle journeys along it.

This example is a real case of a route on the transport 
system selected as a use case for the methodology, which 
will be described later on. The identifier code of the route 
is 534, represented by r534, it has 11 stops, and each stop 
is represented by a node whose subscript is its numerical 
identifier. These nodes are a subset of set N which represents 
the nodes of the transport network. The 10 directed arcs 
linking each pair of nodes are represented by purple arrows 
and the subscript of each arc corresponds to its numerical 
identifier. These arcs form a subset of set A which represents 
the arcs of the transport network. All vehicle journeys along 
route r534 are represented as J534. Taking as an example time 
period T consisting of the whole month of December 2019, 
the vehicle journeys along this route were planned to run 

from Monday to Friday, excluding public holidays, every 
20 min from 11:10 to 16:30, and every 30 min from 16:55 
to 20:55. Therefore, for this type of day, 26 journeys per day 
were scheduled. Vehicle journeys were also scheduled on 
non-holiday Saturdays every 30 min from 06:25 to 12:25. 
Therefore, for this type of day, 15 journeys per day were 
scheduled. The set of vehicle journeys on route r534 in period 
T, represented by JT,534, consists of all the journeys com-
pleted according to this schedule. One element of set JT,534 
is the vehicle journey that started on Monday 2 December 
2019 at 11:10. Assuming that t represents the date and time 
indicated and that the vehicle that completed the journey is 
identified by code 1028, then this journey would be repre-
sented by Jt,534,1028.

3.2 � Considerations on intercity transport systems: 
challenges to be addressed

With the commonly used technologies of intercity road 
transport systems, especially automatic vehicle location 
systems and automatic payment systems, it is possible to 
obtain information about the trip made by passengers: at 
which node they started their trip, which vehicle they used 
and at what time they boarded the vehicle. However, it is 
not always as straightforward to identify the end point and 
the duration of a passenger’s trip, as there is often no record 
of the time at which the passenger alights from the vehicle. 
Nevertheless, it is possible to determine the destinations 
of regular users of the transport system by mining the data 
related to the trips they make, since these users generally 
use smart payment systems, such as contactless cards, which 
automatically record the transactions made in payment for 
the trips they make. Estimating the destination stop, for trips 

Fig. 1   Example of the proposed notation on a route
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where this information is not available, is a challenge for the 
methodology and is explained in Sect. 3.2.1.

With regard to the distance between passengers, in the 
case of urban road transport systems, passengers may travel 
standing and seated, and move within the vehicle without 
any impediment, so it is not possible to determine this vari-
able using these technologies alone. However, in the case of 
intercity road transport systems, passengers are generally not 
allowed to stand when travelling, and only in certain circum-
stances and on short journeys, since the vehicles used in such 
systems are not designed for standing passengers. However, 
it is not always possible to determine the distance between 
passengers during a vehicle journey, since in intercity trans-
port systems that are not long-distance, passengers are not 
assigned a seat at the time of travel and therefore, when 
they enter a vehicle, they can occupy the free seat of their 
choice. The seat occupied by each passenger on their trip 
is not known, so estimation of this seat will be the second 
challenge faced by the methodology. Section 3.2.2 explains 
how this challenge has been addressed in the methodology.

3.2.1 � Addressing values missing from the transport system 
data: destination stop estimation

In data mining projects, the challenge of how to handle 
datasets with missing values often has to be addressed. In 
a general context, Dinh (2021) proposed a novel method, 
called Clustering Mixed Numerical and Categorical Data 
with Missing Values (k-CMM), to classify datasets with a 
high number of missing values. In the specific context of 
traffic accident data analysis, this challenge was tackled by 
Deb (2016), who proposed a method based on decision trees. 
As mentioned above, information is not always available 
on the destination of passengers and the time at which they 
alighted from the vehicle, which are essential to ascertain 
their journey time and to identify their interactions. How-
ever, there are two types of users whose trips have a very 
definite pattern in terms of the destination stops:

•	 Passengers that make multi-stage trips, such that the end 
node of one stage (transfer node) is close to the start node 
of the next stage.

•	 Passengers who make single-stage trips to their place of 
work, study, public service or leisure and who also return 
using the transport system.

The trips made by this type of passenger exhibit a com-
mon pattern: on two consecutive journeys made by the 
same passenger, the destination node of the first is located 
within a short distance of the origin node of the second. 

This proximity is determined by a distance threshold that 
depends on the type of transport network, smaller in the 
case of urban transport and larger in the case of intercity 
transport, Up. However, to distinguish this case from any 
other that may occur on the user’s journey, it is necessary 
to introduce a second distance threshold, which determines 
whether two nodes of the network, without being the same, 
are similar for the purpose of estimating the destination of 
the first journey, Us. This is the case for those trips that start 
from the same geographical location but with a different 
destination (at intersections or on both sides of a two-way 
road), or from two consecutive nodes on the same route, but 
very close to each other.

In line with the techniques proposed by (Li 2011) and 
(He 2015), a procedure was developed to infer the final 
destination of the trips made by passenger p – from one of 
the two categories above – when this information has not 
been recorded. This procedure is based on the available 
data on trips made by p on the different vehicle journeys 
Jt,i,v. For each of these vehicle journeys, node n, at which 
p started the trip, and time t’ of the start of the trip, are 
known. Node n is the origin node of one of the arcs that 
form a sequence of arcs (ap, …., aq) that form the segment 
of route i travelled in Jt,i,v. Moreover, t ≤ t’, meaning that 
the start of the user’s trip, t’, is equal to or later than the 
start of vehicle journey t. The purpose of the procedure 
is to ascertain the final stop of the trip made by p on Ji,t,v 
and, therefore, the sequence of arcs that form the segment 
of route i travelled by p. To deduce the final stop q of 
journey Jt1,i1,v1, the procedure uses the known data for the 
next journey made by p. If Jt2,i2,v2 is the next journey made 
by p, then node n2 and time t” at which he/she started the 
journey are known. If nodes n1 and n2, the starting nodes 
of the two vehicle journeys, are not considered as similar, 
that is, the Euclidean distance between both is greater than 
the Us threshold mentioned above, the final stop q of the 
trip made by p on Jt1,i1,v1 would be the stop on route i1 
closest to stop n2 at which p started the trip on Jt2,i2,v2, pro-
vided that this final node q is located at a distance from n2 
that does not exceed the Up proximity threshold indicated 
above, that is, it is not too far away. Once the final stop 
has been deduced, the time of the trip made by p will be 
the sum of the time taken by v to traverse the sequence of 
arcs (an1, …, aq).

Taking the notation used in the description of this pro-
cess, Algorithm 1 provides an estimation of the destination 
stop of the trip made by passenger p in vehicle journey 
Jt1,i1,v1.
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Algorithm 1 Estimation of the destination stop

Input data:
n1: start node of trip made by p in Jt1,i1,v1
n2: start node of trip made by p in Jt2,i2,v2
Qn2: Set consisting of all the nodes with Euclidean 
distance Ed to n2 less than Up

Goal:
nf: destination node of trip made by passenger p in 
Jt1,i1,v1
If ( Ed(n1, n2) < Us ) Then

Stops n1 and n2 are very close: destination node 
nd cannot be estimated.

End if
Dmin = Up
For each node ni in set Qn2 Do

If ni is a node of route ri Then
If De( ni , n2)  < Dmin Then

Dmin = De( n1, n2 )
nf = ni

End if
End if

End For
If Dmin < Up Then 

Node nf is the destination stop.
Else

Destination stop cannot be determined
End if

3.2.2 � Estimation of unknown data: estimation of the seat 
occupied by a passenger

This section describes how to estimate the seat occupied by 
a passenger during their trip. If it is assumed that passengers 
can choose any free seat they wish, then the objective of this 
estimation is to approximate the passenger’s behaviour in 
making this choice as closely as possible. In the case where 
the estimation is based on an objective to be achieved, such 
as minimising infection risk for passengers travelling on a 
vehicle journey, then a complex problem arises in which 
there are multiple individual objectives and an overall objec-
tive that is defined a priori. The individual objective is to 
minimise the close interactions of each passenger travelling 
on the vehicle journey, which depends on the seats occupied 
by the passengers in the vehicle at the time the passenger 
enters and the seats that will be occupied by subsequent 

passengers. The overall objective defined a priori is to 
minimise the number of total interactions. In this context 
of complex decision-making problems, hybrid methodolo-
gies using multi-criteria programming and data clustering 
(Petchrompo 2021) or combinations of mathematical models 
such as DEMATEL (Decision Making Trial and Evalua-
tion Laboratory) and PROMETHEE (Preference Ranking 
Organisation Method for Enrichment Evaluation) (Pegoraro 
2021) have recently been proposed. Also in the context of 
complex problems affecting manufacturing or production 
processes, hybrid methodologies combining machine learn-
ing, big data and simulation techniques have recently been 
proposed (Gao 2022).

Considering the observations made on intercity road 
transport systems, the assumption that all passengers 
are seated is realistic. In the methodology, the distance 
between two passengers travelling in a vehicle is defined 
as the distance between the center points of the seats they 
occupy. In order to systematize the process of obtaining 
the seat center points and thus automatically obtain the 
distances between seats, a two-dimensional representation 
model of the vehicle space for passengers was developed 
that takes into account the wide variety of bodywork types 
used in intercity transport systems. This spatial representa-
tion is based on the vehicle bodywork drawings and meas-
urements taken on the vehicles. Figure 2 shows a represen-
tation of the passenger areas of the two types of vehicles 
considered in this study.

This paper assumes that the passenger remains in the 
same seat for the entire trip, and two seat allocation policies 
are considered:

•	 Empirical policy (EP). This policy is based on observed 
behavior whereby the user prefers not to sit next to 
another passenger, without any other consideration.

•	 Minimize risk policy (MRP). This policy consists of 
assigning the user to the free seat that is more than 2 m 

Fig. 2   Schematic representation of vehicle
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away from the largest number of passengers, in order to 
avoid as many interactions as possible with passengers 
on board the vehicle when boarding.

The EP policy, which approximates passenger behav-
iour, is used as a baseline to compare the effectiveness of 
the MRP strategy. As stated, the EP policy does not take 
into account the fact that passengers may travel together 
and therefore be seated as close together as possible in the 
vehicle. Nor does it take into account the fact that there 
may be passengers who do not mind sitting next to another 
passenger, when other seats are further away. For this rea-
son, it is reasonable to assume that the close interactions 
that occur in reality would be greater than those that occur 
when applying the EP strategy. Therefore, the effect of 
the MRP policy, in terms of reducing the number of close 
interactions, would be greater than the interactions that 
occur in a real case.

If the occupancy of the vehicle does not permit strict 
application of the allocation criterion, then a seat is ran-
domly allocated from the vacant seats that are in the best 
circumstances according to the allocation policy used.

The allocation procedure is based on three parameters 
the values of which vary according to the allocation policy. 
These parameters are:

•	 Safety distance. In the case of EP, this is the minimum 
distance between the centers of two adjacent seats, and 
in the case of MRP, it is 2 m.

•	 Affected seats list. This is a list for each seat in each bod-
ywork type in the fleet, showing the number of seats that 
are affected by occupancy of the seat. This list depends 
directly on the value of the safety distance parameter as 
determined by the allocation policy used.

•	 Potential risk of a seat. This is a value that is assigned 
to each of the free seats in the vehicle during the course 
of a vehicle journey. The value increases as the seats 
that appear in the affected seats list are occupied and 
decreases when any of these seats are vacated.

The procedure simulates seat occupancy by passengers 
in each vehicle journey Jt,i,v, taking as input parameters the 
affected seat list pertaining to the vehicle bodywork type and 
the safety distance of the policy to be applied and, as input 
data, each of the trips made by passengers on that vehicle 
journey (see Algorithm 2).

Algorithm 2 Simulation of the occupancy of vehicle 
seats on a route according to the seat allocation policy

Input data:
AL: Array of affected seats lists for each seat in the 
vehicle. AL[i] refers to the affected seats list for seat i. 
The configuration of this list depends on the safety 
distance used,

Goal:
PR: Array that represents the potential risk of each 
seat i in the vehicle.
When a vehicle journey, Jt,i,v, begins, the initial 
potential risk value is assigned to all elements of PR. 
This initial value is the minimum, as it is assumed that 
there are no passengers in the vehicle.

For each stop the vehicle makes during the vehicle 
journey

For each user that alights from the vehicle
Their seat i is vacated and the minimum risk 
potential value is assigned to PR[i]
For each seat j in AL[i] Do

If seat j is occupied Then
The value of PR[i] increases.

Endif 
Endo 

Endo
For each user boarding the vehicle Do

Obtain set of seats with the lowest potential 
risk.
Assign seat i randomly selected from the 
previous set. 
For each seat j in AL[i] do 

If the seat j is free Then
The value of PR[j] increases.

Endif
Endo

Endo
Endo
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3.3 � Data model

Based on the above, the proposed data model is divided into 
two categories. The first, named Graph Database, represents 
the entities and relationships that correspond to levels 1 and 
2 of the described formalization of the transport system: the 
network of stops, the definition of the route services, and 
the operations and trips made on them. The second level 
represents the different events covered by the methodology 
and those related to seat allocation, which are not found in 
the initial database.

In the case of the Graph Database, choosing a suitable 
database structure, which reflects the entities of interest and 
their relationships in a meaningful and robust way, without 
the need for repeated inferences, is of particular importance 
when dealing with a large volume of data. This is why we 
have opted for a graph database – making it easier to obtain 
data on the concurrence of users in vehicles (the main object 
of analysis of this work) – called a transport system graph 
(TSG). The schema is presented in Fig. 3, which illustrates 
the graph representing the entities involved and the relation-
ships between them.

In the network arc relationship, the travel time attribute 
indicates the estimated time it takes for a vehicle to travel 
from the origin stop of the arc to the destination stop. In 
the first stop and end stop relationships, the time attribute 
specifies at what time the user boarded or alighted from the 
vehicle on the vehicle journey.

The Events and Seats category represents co-presence 
and interaction events. From this category, different data-
sets will be generated for each type of event to be analyzed: 
set of participating users, duration of journeys and times at 
which they take place, and event matrices, inter alia. The 
following data structure is proposed to represent the two 
types of events (Table 3). This structure contains the follow-
ing fields: event start date and time, passenger p1 user key, 

passenger p1 age group, passenger p2 user key, passenger p2 
age group, number of events, total event duration.

While co-presence events may be obtained directly from 
the graph defined in the transport system category described 
above, for the estimation of interaction and close interaction 
events, information on the distribution of the seats in the 
vehicle in which the passenger made the trip is required to, 
on the one hand, simulate the user’s choice of seat for the 
trip and, on the other hand, determine the passengers who 
are less than 2 m away from him/her. For this purpose, an 
additional data structure has been developed that represents, 
for each bodywork type in the fleet and distance d, btd, the 
list, for each seat ai, of all the seats {aj, ak, …, an} that are at 
a distance of less than d (the list of affected seats described 
above). Schematically, this structure is shown in Table 4.

3.4 � Implementation

The processes and data involved in implementing the pro-
posed methodology are schematically presented in Fig. 4. 
It is structured in two stages: the data preparation stage and 
the modelling stage. These stages are described below along 
with some concepts that will be used later in the Use Case 
section.

The purpose of the data preparation stage is to generate 
the co-presence and close interaction events defined in the 
formalization of the problem. These events are the starting 
point of the modelling stage. In this stage, three processes 
are executed sequentially to produce the data required for 
generating the co-presence and close interaction events. 
The first process – final node estimation – estimates the 
final node of user journeys. The second – selection, filter-
ing and loading – encompasses all the tasks related to the 
generation and loading of the TSG from, on the one hand, 
the records contained in the TDB relating to the transport 
network, vehicles, users, contactless cards, services and trips 
made, and on the other, the destination stops as estimated 
by the previous procedure, guaranteeing the reliability, 
accuracy, completeness and consistency of all the data. The 
third – seat identification – generates the list of affected seats 
described in Sect. 3.2.2 for each bodywork type in the fleet 
and for each safety distance considered, based on the two-
dimensional representation of the seats. Once the data is 
generated, the event generation processes are executed. The 
co-presence events are generated through the co-presence 
process and the close interaction events through processes 
that are implemented according to epidemiological param-
eters (safety distance and cumulative duration of the interac-
tions) and the seat allocation strategy. In this case two have 

Fig. 3   Schema of the Graph Database

Table 3   Event data structure

Start date and time p1 user key p1 age group p2 user key p2 age group Number of events Total duration
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been implemented: the close interaction EP process for the 
EP strategy and the close interaction MRP process for the 
MRP strategy.

The generation of close interactions is a key step in the 
methodology. In the case of the road transport systems for 
which this methodology has been developed – those in 
which passengers are not assigned a seat in the vehicle – the 
distance between passengers who travel on the same route 
segment in the same vehicle journey is not known. To obtain 
this information, the methodology first uses the procedure 
for estimating the destination stop on those journeys where 
this information is not available, as described in Sect. 3.2.1, 
and, once the origins and destinations of the journeys are 
known, the procedure that performs the “simulated” assign-
ment of a seat to a passenger on his or her journey is per-
formed, making use of two alternative seat assignment 
policies, as described in Sect. 3.2.2. To go into more detail, 
given that for all passengers travelling on the same vehicle 
journey, the origin stop and the destination stop of their trip 
are known (destination stop estimation process) and all have 
been assigned a seat, according to the seat assignment policy 
applied, then all the interaction events that occur between 
passengers on the vehicle journey can be obtained. These 
events are recorded in a data structure described in Table 3. 

The passengers involved in each interaction are retrieved 
from the identifier of the payment card used by the pas-
senger, as this identifier is unique for each card. The dis-
tance between passengers is the distance between the seats 
occupied by each passenger. The shared route segment on 
which both passengers involved in the interaction coincide 
is obtained from the origin and destination stops of the trip 
made by each of the two passengers. The duration of the 
interaction is the time spent by the vehicle in travelling the 
shared route segment and this time is the sum of the travel 
times of the arcs ai joining the sequence of stops that are part 
of the shared segment travelled by the two passengers. All 
interactions between passengers that coincide on a shared 
route segment in the same vehicle journey are of the co-
presence type. To obtain the close interactions that occur 
between two passengers, as described in Sect. 3.1 (where the 
concept of close interaction was defined), the first step is to 
obtain their co-presence interactions that have occurred in 
a 24-h window, and the second step is to select those whose 
distances are less than the safety distance of 2 m, using the 
data records represented in Table 4, and finally, the cumula-
tive duration of these selected interactions is calculated. If 
the cumulative duration is equal to or greater than 15 min, 
then a close interaction between the two passengers is con-
sidered to have occurred. 

The modelling stage includes the tasks related to the pro-
duction of new information from the sets of events gener-
ated, which are included in process 6-Report Creation. In 
this process, different sets of data are generated (population 
of participating users, groupings of events according to age 

Fig. 4   General process diagram

Table 4   Bodywork type data structure

Bodywork type key Seat identifier Affected seats list

btd ai {aj, ak, …, an}
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of the users, etc.) and different modelling techniques are 
applied according to the objectives and specific needs to 
be addressed, which may pertain to the field of statistics or 
machine learning. In the use case presented below. Consider-
ing the data used in epidemiological work on contacts, data 
of epidemiological interest include the average time of trips 
made by users from different age groups, the average number 
of trips made by users from different age groups, the number 
of interaction events, the number of events that lead to each 
interaction, the average duration of the events and the co-
presence and close interaction matrices. Since no baseline 
datasets are available to validate the results, the consistency 
between the different results was analysed.

4 � Use case

The proposed methodology was applied to the intercity road 
transport system on the island of Gran Canaria (Canary 
Islands, Spain). This transport system is operated by the 
company Global Salcai-Utinsa, which annually transports 
around 20,000,000 passengers and covers 25,000,000 km. 
The time period studied was the month of December 2019, 
two months before the COVID-19 pandemic was declared. 
The decision to select this month was made because in 
this period demand was not affected by the travel restric-
tions imposed by the health authorities as a result of the 
national health emergency and, in addition, it is a month in 
which mobility needs fluctuate considerably due to the fact 
that in this month there are working days, public holidays, 
school periods, and non-school periods during the Christmas 
holidays.

To apply the methodology in this use case, the following 
tools were used: relational database, with the relevant data 
required for this study from the operator’s transport data-
base, Neo4j to implement the graph database used by the 
methodology, and the RStudio development environment, 
for programming the procedures for debugging, complete-
ness, data loading, generation of the different data sets to be 
analyzed, and the procedures for modelling and obtaining 
information.

The first step was the evaluation of the final node estima-
tion process. This was applied to trips made with a type of 
card where users record their exit from the vehicle, using 
the Euclidean distance Ed between the known destination 
stop and the stop estimated by the procedure as the evalua-
tion metric. This set of trips, for which the destination stop 
is known, was obtained from the public transport system 
that was used as a use case for this methodology; the period 
for which these trips were made matches the period cho-
sen for the methodology, the results of which will be pre-
sented in Sect. 4. In the process, the following results were 
obtained: out of a total of 278 694 user trips, in 26.7% it was 

not possible to estimate a destination node for the follow-
ing trip (if any), and in 205 183 (73.6%) this was possible. 
Table 5 shows the number of trips for which it was possible 
to estimate the destination stop as a function of the distance 
between the known destination stop and the estimated stop. 
The Percentage of cases column shows the percentage of 
trips relative to the number of trips for which it was possible 
to estimate the destination stop, where the estimated desti-
nation stop is within the distance indicated in the Distance 
column.

As can be seen in Table 5, 48.21% of the estimated desti-
nation stops coincide exactly with the destination stop of the 
trip made by the passenger, and 71.6% of the estimated stops 
are located at a distance of less than 1 km and 80.12% at a 
distance of less than 3 km. For the purposes of the methodol-
ogy, the travel time of the passenger is a key factor, as this 
time will be the upper limit of the duration of the interac-
tions between this passenger and the other passengers with 
whom he/she shares the vehicle. For this reason, to ensure 
that the estimated travel times do not differ significantly 
from their actual values, the value adopted for threshold Up 
in Algorithm 1 is 1 km.

After applying the procedures to select, debug and com-
plete the initial data – obtained from the transport database 
(TDB) of the aforementioned company – the total number 
of Graph Database nodes is shown in Table 6.

The number of trips completed in the period considered 
in this study, using payment cards as a means of payment, 

Table 5   Distance between the estimated destination node and the 
actual destination node

Distance Number of trips Percentage 
of cases %

D = 0
(actual stop = estimated stop)

98 926 48.21

0 < d < 0.5 km 20 630 10.05
0.5 km <  = d < 0.75 km 21 939 10.69
0.75 km <  = d < 1 km 5452 2.65
1 km <  = d < 3 km 17 485 8.52
3 km <  = d 40 751 19.86

Table 6   Number of nodes (entities) of each type

Node type Number of entities

Bodywork type 23
User 43,804
Vehicle journey 70,732
Route 440
Stop 2923
Payment card 44,372
Vehicle 443
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is 996184. Of these trips, the destination was known for 
60,545 and was not known for 935,639. By applying the 
destination stop estimation procedure to these 935,639 
trips, the destination stop could be estimated for 725,145 
trips and could not be estimated for 210,494 trips. As 
a result, 785,718 of the trips completed in the selected 
period were represented in the Graph Database, that 
is, 78.87% of the trips completed in this period. This is 

therefore a significant percentage of the trips completed 
in the selected study period. Table 7 shows these results.

4.1 � Preliminary data analysis

In a first analysis, information could already be obtained 
on certain mobility features of the transport system used as 
a case study. The distribution of the total number of users 
according to their age is shown in Fig. 5(a). Nine age groups 
were defined – 0 to 14, 15 to 19, 20 to 24, 25 to 19, 30 to 39, 
40 to 49, 50 to 59, 60 to 69, and 70 and over – in order to 
keep the study population specific, especially in the 15 to 24 
age group, which accounts for 46% of the users. Travel times 
are shown in Fig. 5(b), which shows that approximately 40% 
of the trips lasted less than 15 min. This is relevant since 
this is the minimum time for close interaction to take place. 
Figure 5(c) shows in more detail how travel times are dis-
tributed, in this case distinguishing the quartiles for each 

Table 7   Trips completed in the selected period

Total trips 996,184

Trips with known destination 60,545
Trips with unknown destination 935,639
Trips for which the destination could be estimated 725,145
Trips for which the destination could not be estimated 210,494
Total trips entered in the Graph Database 785,718

Fig 5   Preliminary values obtained per age group in the period analyzed; a Number of users per age group, b Number of journeys per time inter-
val, c Quartiles of the travel time per age group, and d Number of journeys per age group 
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of the age groups. The graph shows that in the younger age 
groups, travel times are slightly shorter. The total number of 
trips made by each group is shown in Fig. 5(d).

Table 8 shows the average number of trips that each 
user, in the different age groups, made in the chosen study 
period. This information is relevant because the higher the 
frequency of trips made, the higher the probability of being 
involved in the close interactions that occur. It is significant 
to note that the largest groups of users and those with the 
most trips—passengers in the 15–19 and 10–24 age groups 
(see Fig. 5(a, d)—are not the ones who on average have trav-
elled the most in the period under study. The three groups 
of passengers who, on average, made the most trips were, in 
that order, the 40–49, 30–39 and 50–59 age groups.

4.2 � General characteristics of the events

In line with the contact-based studies on epidemiology, this 
study focused on three key aspects: the number, frequency 
and duration of interactions on each day of the period ana-
lyzed. The close interaction data obtained are the result of 
applying the EP and MRP allocation policies. It should be 
noted that, when dealing with close interaction events, where 
a 24 h window is considered, if more than one interaction 
occurs in the window, all are associated with the time at 
which the first interaction occurs.

The number of events is summarized in Table 9, with 
the median obtained for each of them in the period. It may 
be concluded that around 12% of the user pairs that travel 
together in a vehicle at the same time could give rise to a 
close interaction EP event, and 6% to a close interaction 

MRP event. In the case of two or more events in 24 h, the 
percentage drops to 9% for close interaction EP and less than 
2% for close interaction MRP. The median durations are 
summarized in Table 10. In this case, the shorter duration 
of co-presence has to do with the fact that for close interac-
tions, events lasting less than 15 min are ruled out.

4.3 � Event matrices

In accordance with the definition of the contact matrix 
described in Sect. 3.1. the event matrices of co-presence and 
close interaction between the defined age groups of trans-
port system users are presented below. The close interaction 
matrix was obtained for each of the seat assignment policies. 
Specifically, the following matrices were obtained:

•	 Total events matrix (TM). Where each element tij repre-
sents the total number of events between age groups i and 
j. Since the events were generated from users travelling 
at the same time in the same vehicle journey, tij = tji, this 
matrix is therefore symmetrical.

•	 Event matrix for the number of users belonging to each 
age group (RM). In this case, each element rij of this 
matrix contains the average number of events between 
transport users of age group j with users of age group 
i. Therefore, if nj is the number of users of age group j, 
and tij is the total number of interactions between users 
from age groups i and j, then rij = tij/nj. This matrix cor-
responds to contact matrix M described in Sect. 3.1, for 
co-presence interactions or close interactions, as appro-
priate.

Considering the definition of the events, co-presence is 
the most numerous set. During the study period, more than 
12 million events were generated, which are distributed 
among the different age groups as shown in Fig. 6(a). In 
this matrix, the contacts of 15–19-year-olds with each other 
stand out in particular, with about 1 million occurrences in 
the period. This group also stands out in the relative event 
matrix, as can be seen in Fig. 6(b), with slightly more than 
100 events with users of the same age group, and where 
almost all other groups up to the age of 59 also coincide with 
this group with more than 50 events per user.

A subset of the total number of recorded co-presences 
can be treated as close interactions if the EP seat allocation 

Table 8   Average number of 
trips made by members of each 
age group in the study period

Age group Average number 
of trips made

0–14 11.8
15–19 16.6
20–24 16.4
25–29 18.1
30–39 20.8
40–49 21.6
50–59 20.2
60–69 15.9
 >  = 70 11.9

Table 9   Summary of median total events

1 event 2 events  > 2 events

Co-presence 176,892 2897 225
Close interaction EP 20,941 270 13
Close interaction MRP 10,465 56 0

Table 10   Summary of median event duration in minutes

1 event 2 events  > 2 events

Co-presence 14 33 57
Close interaction EP 24 39 58
Close interaction MRP 24 40 59
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policy is applied. For this type of event and allocation pol-
icy, the estimated close interactions mostly involve users 
aged between 30 and 59 years (see Fig. 6(c)). The same age 
group is also prominent in Fig. 6(d), which represents the 
RM matrix.

In the case of close interactions applying MRP, the result-
ing matrices represent a smaller set of interactions compared 
to EP, because seat allocation under MRP avoids close inter-
actions as much as possible. The overall behavior of inter-
actions between age groups is similar to that observed in 
the matrices obtained by applying EP, as can be seen in the 
heatmaps in Fig. 6(e and f), and the number of interactions 
is more than halved.

4.4 � Discussion

This discussion section will focus on results that are epide-
miologically relevant and on the complexity of the proposed 
methodology. Firstly, it will look at results that provide 
information on the frequency and duration of events in the 
transport system, and secondly, results that provide informa-
tion about usage patterns and who interacts with whom in 
each of the scenarios considered.

A first approximation of duration and frequency was 
obtained in the preliminary study presented in Sect. 4.1. It 

should first be mentioned that a considerable percentage of 
trips made by transport system users have a duration of less 
than 15 min (Fig. 5(b)). An analysis of journey lengths by 
age group (Fig. 5(c)) shows that, with the exception of those 
aged 0–14 years, the median travel time is above 15 min and 
below 20 min, but the largest age group, 15–19-year-olds 
(Fig. 5(a)), which also accounts for the largest number of 
trips (Fig. 5(d)), shows a median time of 16 min, and 40% 
of trips are shorter than said threshold. The results show 
that, in the two younger age groups, travel times are slightly 
shorter, probably due to the importance for these age groups 
of travelling to their place of study, which is usually not very 
far from their place of residence. It should be remembered 
that, as stated in Sect. 3.1, for close contact to occur between 
two people, they must be less than two meters apart for at 
least 15 min in a 24-h period.

A more precise analysis was performed in Sect. 4.2, in 
which the total number of events and their duration were 
studied on each day of the period analyzed, making a distinc-
tion between one, two or more than two events between two 
users. Table 9 summarizes each case with the daily median. 
Taking these median values as representative values of the 
number of close interactions that occur daily and consider-
ing that the number of users who participated in the study 
is 43804 (see Table 6), the average number of daily close 

Fig. 6   Event matrices; a Co-presence interactions TM, b Co-presence interactions RM, c Close interactions TM applying EP, d Close interac-
tions RM, e Close interactions TM applying MRP, and f Close interactions RM applying MRP
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interactions can be estimated, which in the case of the EP 
seat allocation strategy is 0.48 and in the case of MRP is 
0.24. Therefore, a 50% reduction is achieved with the MRP 
strategy. Although the number of events in a day is predomi-
nantly one for all types, it should be noted that 40% of the 
multiple co-presence and close interaction EP events occur 
between users aged between 15 and 19 years, with what 
this may imply for scenarios in which travel restrictions are 
adopted for people in this age group. The impact of a vehicle 
seating strategy designed to minimize the risk of infection, 
such as MRP, which was used in the simulations carried 
out in this study, should be noted. The results show that 
the number of multiple events decreases significantly when 
this seating strategy is applied, a clear indicator of how the 
probability of infection is reduced when efforts are made to 
maintain a safe distance between passengers in a vehicle. 
Another relevant conclusion can be drawn from the results 
shown in Table 9: most of the close interactions – 91% if 
the EP strategy is applied and 98% if the MRP strategy is 
applied – consist of a single interaction event. Therefore, 
measures such as increasing the frequency of bus services 
or using larger vehicles with higher passenger capacity on 
routes with higher demand would be effective in reducing 
the risk of infection. The duration of these cases is sum-
marized in Table 10. Of note is the increase in the median 
duration for close interactions, which is affected by the mini-
mum threshold of 15 min. It should not be forgotten that the 
co-presence times are a faithful reflection of users travel-
ling in vehicles at the same time, with the interest that this 
information may have as a reference point for the planning 
of operations in a transport system.

The event matrices presented in Sect. 4.3 obtain infor-
mation about who is in contact with whom in the transport 
system, which age groups are most frequently involved 
in contacts, and to what extent they are in contact with 
other age groups. The co-presence event matrices in 
Fig. 6(a) and (b) show that the most prevalent users are 
those between 15 and 19 years of age. This result stems 
from the fact that this group of users is the most numer-
ous, the group that made the greatest number of trips and, 
moreover, usually has a significant presence in all time 
bands, as mentioned above. However, when analyzing the 
close interaction matrices, when applying either the EP or 
MRP strategy, the distribution of interactions by age group 
does not reflect this behavior, since the users that are most 
involved in close interactions are those between 30 and 
59 years of age. This result is consistent with the results 
presented in Sect. 4.1, specifically with those shown in 
Table 8, which discusses general aspects of trips made 
by transport users. It also indicates that there is a greater 
likelihood of close interactions between users in this age 

range, which would suggest that these users used pub-
lic transport more frequently, that is, more trips during 
the period analyzed, and with similar patterns of use. As 
shown in Fig. 5(c), users in this age group generally make 
trips lasting more than 15 min. Therefore, it may be con-
cluded that this is the most exposed group. By comparing 
the close interaction matrices resulting from application 
of the EP and MRP seat allocation strategies, it is pos-
sible to estimate the effect of a seat allocation strategy 
designed to minimize close interactions and, therefore, to 
reduce the risk of contagion. As can be seen, the impact is 
considerable, as the average number of close interactions 
varies from a maximum value of 0.200 when applying the 
EP strategy to a maximum value of 0.08 when applying 
the MRP policy.

If we compare the behavior of the close interactions 
based on the contact matrix simulated in this study with 
the behavior of the close contacts obtained in the studies 
based on inferred contact networks – as cited in Sect. 2.1 
(with the POLYMOD project as a reference) – an impor-
tant difference becomes apparent. This difference is the 
absence of a pronounced diagonal with high values in the 
contact matrices, a diagonal that does appear in the studies 
based on inferred networks, accompanied by two parallel 
diagonals. These diagonals reflect, firstly, the tendency 
of individuals to maintain contacts between their own 
age group and, secondly, contacts between children and 
middle-aged adults. However, these tendencies are not 
observed in the behavior of the close interactions reflected 
in the results obtained in this study. There are two reasons 
for this difference. The first is that this study is based on 
mobility data from anonymous users, which is a represent-
ative group of the transport system user population and is 
not conditioned by people’s willingness to participate in 
a survey, as is the case in studies based on inferred net-
works. Because they are automatically recorded events, the 
matrices reflect a more heterogeneous spectrum of partici-
pants, representative of population mobility. The second 
reason is that the events are not social contacts per se. Co-
presence or interaction events are mostly involuntary, and 
do not have to be directly linked to personal relationships 
established at home, at school or at work, but rather to the 
place of residence, routine and habits of the participants. 
However, the heterogeneous contact behavior observed in 
this study is in line with the results of Eubank (2004).

It should be noted that the methodology has made it 
possible, for the use case presented, to have data on inter-
actions with an infection risk for a much higher number 
of anonymous users than in most of the epidemiological 
studies referenced in Sect. 2 on related work. Only a few 
studies based on inferred contact networks have been 
conducted with a larger number of participating users. 



	 T. Cristóbal et al.

1 3

Finally, in order to determine the statistical relevance of 
the results for the population of the geographical area in 
which the transport system operates, Table 11 shows the 
number of inhabitants of the island of Gran Canaria in the 
period studied for each of the age groups,4 the number of 
transport users in the use case in the different categories, 
and the percentage they represent in each case. It is worth 
noting that the age group with the highest number of users 
and the highest mobility in this intercity public transport 
system – passengers aged between 15 and 19 (see Fig. 5(a) 
and (d)) – corresponds to around 22% of the population 
in this age range, and that the next most representative 
group – passengers aged between 20 and 24 – accounts 
for 15% of the population. Based on these percentages, it 
may be concluded that the insights gained will be useful 
in the study of the factors that influence the transmission 
of respiratory diseases in public transport systems.

The complexity of the proposed methodology can be 
analyzed from the point of view of the data used and from 
the point of view of the processes involved. The input data 
corresponding to the entities described in Sect. 3.1 are com-
monly used in transport operators’ data models, so this meth-
odology can be applied to a large number of road transport 
systems. However, data on seating locations in each vehicle, 
discussed in Sect. 3.2, may not be available, as in the use 
case where, based on the different bodywork types, the rep-
resentation described in Table 4 was obtained. With regard 
to the complexity of the processes, three categories may be 
identified. The first and second can be framed within the data 
preparation phase of any data mining project, where most 
of the resources are usually consumed. In the first category, 
comprising procedures 1 and 2 as illustrated in Fig. 4, for 
estimating the destination stop and selecting and loading the 

transport system graph, it should be noted that the ultimate 
objective is to have a complete, coherent and robust data 
structure that allows the events to be extracted and estimated 
in the most immediate and efficient way possible, a task car-
ried out by procedures 4 and 5 in the same diagram, which 
fall into the second category. Finally, the third category con-
sists of procedures for extracting information, in the form of 
diagrams and event matrices, such as those presented in the 
figures in Sect. 4.

From the point of view of the computational complexity 
of the proposed methodology, the most complex processes 
are the process of estimating the destination stop, the simula-
tion of vehicle seat occupancy based on an allocation policy 
and the generation of interaction events. When analysing 
the complexity of these processes, it must be taken into 
account that the implementations make use of the features 
provided by the database services included in the methodol-
ogy, namely the transport database and the graph database, 
along with the RStudio development environment.

In the case of the trip destination stop estimation process 
described in Algorithm 1 of Sect. 3.2.1, a query made to the 
transport database yields set Qn2, which comprises all stops 
located at a distance of less than threshold Up. The complex-
ity of this algorithm is linear of order n, where n is the size 
of set Qn2. Taking into account the transport network of the 
use case, and taking 1 km as the value of Up, the average 
number of stops that are at a distance less than Up is 21.3 and 
the median is 20; therefore, the average size of set Qn2 is 21 
elements. The best case occurs when the size of set Qn2 is 
the minimum value, where 1 is found to be said value. The 
worst case occurs when the size of this set is the maximum 
value of 67.

In the case of the vehicle seat occupancy simulation pro-
cess described in Algorithm 2 of Sect. 3.2.2, to obtain the 
minimum potential risk, the set of vehicle seats with the low-
est potential risk value and the random selection of one of 
these seats is performed using RStudio functions. The data 
on passenger trips in a vehicle journey are obtained through 
queries to the graph database. As expressed in Algorithm 2, 
the number of operations to be performed by the seat allo-
cation process depends on three factors: the number of pas-
sengers travelling on the route service being processed, the 
number of seats in the vehicle and the number of seats that 
make up the affected seats list for each seat, this number 
being dependent on the safety distance used. The number of 
stops affects the number of queries made to the graph data-
base, with one query being made for each stop on the route, 
except for the last stop, as no trips begin there. The purpose 
of these queries is to determine the number of passengers 
who start their trip at each stop of the vehicle journey being 
processed. If Ns is the number of stops on the route, then 
(Ns-1) queries will be made to the graph database. For each 
passenger, a seat allocation operation is performed, which 

Table 11   Population of Gran Canaria and users of the transport sys-
tem by age group

Age groups Inhabitants Users Percentage

0–14 109,616 1009 0.92
15–19 45,409 10,001 22.02
20–24 45,563 7203 15.8
25–29 51,535 3421 6.63
30–39 121,009 4585 3.78
40–49 152,829 5597 3.66
50–59 137,619 5585 4.05
60–69 91,611 3303 3.6
 >  = 70 96,040 3100 3.22

4  Data obtained from the Canary Islands Statistics Institute on 17 
June 2021 (ISTAC,
  http://​www.​gobie​rnode​canar​ias.​org/​istac/​estad​istic​as/​demog​rafia/).

http://www.gobiernodecanarias.org/istac/estadisticas/demografia/
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involves obtaining the set of seats with the lowest potential 
risk. Assuming a linear search, if Na is the number of seats 
in the vehicle, then this process will require Na comparison 
operations. When assigning the seat to the passenger, the 
affected seats list must be processed to update the potential 
risk of each seat in this list. Similarly, when the seat becomes 
vacant, because the passenger occupying the seat has arrived 
at the destination stop, the potential risk of the seats that are 
part of its affected seats list is updated. If Nl is the size of 
the affected seats list, assuming that all seats in the vehicle 
have an affected seats list with the same number of items, 
then updating the potential risk of the list will require Nl 
update operations, which will be an addition operation in the 
case of increased risk and a subtraction operation in the case 
of decreased risk. Therefore, for each passenger who has 
travelled on the vehicle journey, (Na + 2Nl) will be required, 
where Na is the number of comparison operations and Nl is 
the number of update operations.

Finally, it should be noted that the results presented were 
obtained according to initial specifications concerning the 
definition of close contact used in the case of COVID-19 
and the seating policies used. In the event that these initial 
specifications were modified – for example, by changing the 
definition of close contact – the methodology would not be 
affected, since it is possible to parameterize all the imple-
menting processes.

5 � Limitations of the study

The first limitation of this study is that it assumes that there 
is a risk of infection between two people when they are in 
close contact. Therefore, the methodology used could only 
be applied in the case of diseases where the main mode of 
transmission is close contact, as is the case with COVID-
19.5 A second limitation is that it is applied in intercity road 
transport systems and assumes that all passengers are seated; 
this assumption is not a serious limitation, since standing is 
usually not permitted for safety reasons. Another limitation 
is that it is assumed that there is a risk of infection in vehicles 
when two passengers are on the same vehicle at the same 
time. Therefore, the presence of two passengers at the same 
stop on the transport network has not been considered. In the 
case of intercity public road transport, this limitation is of 
only relative importance because passengers arrive at a stop 
a few minutes before catching the vehicle in which they will 
be travelling, and it is not common for them to spend long 
periods of time at the stops, and because most of the stops 

on this type of transport system are located outdoors, thus 
reducing the risk of infection. The final limitation is that since 
the passenger’s seat in the vehicle is not known, the location 
of the passenger was simulated based on a seating allocation 
policy. The importance of this limitation is also relative, since 
the objective of the study was to learn on which routes and 
at what times the risk of infection is greatest. In this study, 
the policy applied was an EP policy, the aim of which is to 
approximate the passenger’s seating behaviour.

6 � Conclusions

This article has presented a novel methodology that aims to 
provide useful information for epidemiological control in the 
context of public road transport systems. Specifically, and in 
line with the work published in this field, the data provided 
by the methodology make it possible to estimate the time 
that two users of the public transport system may be in close 
contact with each other, the frequency with which these con-
tacts occur and which groups of users of different ages are 
involved. The processes used in the methodology can be run 
with different initial specifications depending on the desired 
aspect: epidemiological in relation to the disease scenario, 
temporal to indicate the period of study, or geographical to 
specify the area of interest of the transport network. The 
methodology is based on data mining and considers all the 
stages required to achieve the proposed goals, including for-
malisation of the problem, incorporating concepts related to 
transport activity and epidemiology, and estimation of miss-
ing or unknown data based on habitual behaviours observed 
in the users of transport systems. The design of the proposed 
methodology makes it possible to obtain useful epidemio-
logical data on a large number of people, based on large 
sample sizes and obtained over extended periods of time. 
This allows for comparative analyses of epidemiological 
data on the populations under study. Another contribution 
of the methodology is that it is designed to assess the impact 
of different measures that could be implemented by transport 
operators to reduce the risk of infection among their users, 
such as the introduction of seating strategies in vehicles.

The proposal was applied to a real case scenario to 
illustrate a use case. This involved analysing data from 
trips made on the intercity transport system of the island 
of Gran Canaria (Canary Islands, Spain) in the month of 
December 2019. The results revealed how often users 
travelled in the period analysed and made it possible to 
estimate the duration of their trips and how often they trav-
elled with other users in the same vehicle and, addition-
ally, how many pairs of users were within a distance of less 
than two metres, simulating the passengers’ choice of free 
seats using two different methods, one more conservative 
than the other. These data were used to obtain estimates of 

5  World Health Organization: How does COVID-19 spread between 
people? https://​www.​who.​int/​emerg​encies/​disea​ses/​novel-​coron​avi-
rus-​2019/​quest​ion-​and-​answe​rs-​hub/q-​a-​detail/​coron​avirus-​disea​se-​
covid-​19-​how-​is-​it-​trans​mitted. Accessed June, 2022.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted
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epidemiological data such as the duration and frequency 
of potential close contacts that may occur on the transport 
system each day of the period analysed, and how these 
contacts are distributed according to different age groups, 
using the co-presence and close contact matrices. These 
results were used to identify the age groups most at risk of 
infection in the period analysed: 40–49, 30–39 and 50–59. 
It was also possible to estimate the impact of two seating 
strategies on the vehicles operating in the transport sys-
tem, one based on observed empirical behaviour and the 
other aiming to avoid close contacts as much as possible.

Proposed future lines of work include combining the 
methodology with systems that predict the dynamics of 
disease spread or study the impact of effective measures 
to reduce the risk of infection in the context of public 
transport systems; systems that use hybrid methodologies 
for decision-making could be of particular interest due to 
their innovative nature.
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