Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/118819
DC FieldValueLanguage
dc.contributor.authorMendonça, Fábioen_US
dc.contributor.authorMostafa, Sheikh Shanawazen_US
dc.contributor.authorFreitas, Diogoen_US
dc.contributor.authorMorgado-Dias, Fernandoen_US
dc.contributor.authorRavelo-García, Antonio G.en_US
dc.date.accessioned2022-10-13T08:56:44Z-
dc.date.available2022-10-13T08:56:44Z-
dc.date.issued2022en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/118819-
dc.description.abstractThe Cyclic Alternating Pattern (CAP) is a periodic activity detected in the electroencephalogram (EEG) signals. This pattern was identified as a marker of unstable sleep with several possible clinical applications; however, there is a need to develop automatic methodologies to facilitate real-world applications based on CAP assessment. Therefore, a deep learning-based EEG channels' feature level fusion was proposed in this work and employed for the CAP A phase classification. Two optimization algorithms optimized the channel selection, fusion, and classification procedures. The developed methodologies were evaluated by fusing the information from multiple EEG channels for patients with nocturnal frontal lobe epilepsy and patients without neurological disorders. Results showed that both optimization algorithms selected a comparable structure with similar feature level fusion, consisting of three electroencephalogram channels (Fp2-F4, C4-A1, F4-C4), which is in line with the CAP protocol to ensure multiple channels' arousals for CAP detection. Moreover, the two optimized models reached an area under the receiver operating characteristic curve of 0.82, with average accuracy ranging from 77% to 79%, a result in the upper range of the specialist agreement and best state-of-the-art works, despite a challenging dataset. The proposed methodology also has the advantage of providing a fully automatic analysis without requiring any manual procedure. Ultimately, the models were revealed to be noise-resistant and resilient to multiple channel loss, being thus suitable for real-world application.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Environmental Research and Public Healthen_US
dc.sourceInternational journal of environmental research and public health[EISSN 1660-4601],v. 19 (17), (Septiembre 2022)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherCap A Phaseen_US
dc.subject.otherGenetic Algorithmen_US
dc.subject.otherInformation Fusionen_US
dc.subject.otherLstmen_US
dc.subject.otherParticle Swarm Optimizationen_US
dc.titleMultiple Time Series Fusion Based on LSTM: An Application to CAP A Phase Classification Using EEGen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/ijerph191710892en_US
dc.identifier.scopus85137582085-
dc.contributor.orcid0000-0002-5107-3248-
dc.contributor.orcid0000-0002-7677-0971-
dc.contributor.orcid0000-0002-2351-8676-
dc.contributor.orcid0000-0001-7334-3993-
dc.contributor.orcid0000-0002-8512-965X-
dc.contributor.authorscopusid57195946416-
dc.contributor.authorscopusid55489640900-
dc.contributor.authorscopusid57197735714-
dc.contributor.authorscopusid7102398975-
dc.contributor.authorscopusid9634135600-
dc.identifier.eissn1660-4601-
dc.identifier.issue17-
dc.relation.volume19en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,828
dc.description.jcr4,614
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.ssciSSCI
dc.description.miaricds10,7
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-8512-965X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameRavelo García, Antonio Gabriel-
Appears in Collections:Artículos
Adobe PDF (4,04 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.