Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/117933
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Penate-Sanchez, Adrian | en_US |
dc.contributor.author | Moreno-Noguer, Francesc | en_US |
dc.contributor.author | Andrade-Cetto, Juan | en_US |
dc.contributor.author | Fleuret, François | en_US |
dc.date.accessioned | 2022-09-09T15:04:17Z | - |
dc.date.available | 2022-09-09T15:04:17Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.isbn | 978-1-4799-7000-1 | en_US |
dc.identifier.issn | 1550-6185 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/117933 | - |
dc.description.abstract | We introduce LETHA (Learning on Easy data, Test on Hard), a new learning paradigm consisting of building strong priors from high quality training data, and combining them with discriminative machine learning to deal with lowquality test data. Our main contribution is an implementation of that concept for pose estimation. We first automatically build a 3D model of the object of interest from high-definition images, and devise from it a pose-indexed feature extraction scheme. We then train a single classifier to process these feature vectors. Given a low quality test image, we visit many hypothetical poses, extract features consistently and evaluate the response of the classifier. Since this process uses locations recorded during learning, it does not require matching points anymore. We use a boosting procedure to train this classifier common to all poses, which is able to deal with missing features, due in this context to self-occlusion. Our results demonstrate that the method combines the strengths of global image representations, discriminative even for very tiny images, and the robustness to occlusions of approaches based on local feature point descriptors. | en_US |
dc.language | eng | en_US |
dc.source | 2014 2nd International Conference on 3D Vision, 14918659, 08-11 December 2014 | en_US |
dc.subject | 1203 Ciencia de los ordenadores | en_US |
dc.subject.other | Pose estimation | en_US |
dc.subject.other | Low resolution | en_US |
dc.subject.other | Boosting | en_US |
dc.title | LETHA: learning from high quality inputs for 3D pose estimation in low quality images | en_US |
dc.type | Conference Paper | en_US |
dc.relation.conference | 2014 2nd International Conference on 3D Vision | en_US |
dc.identifier.doi | 10.1109/3dv.2014.18 | en_US |
dc.identifier.scopus | 2-s2.0-84925340819 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 14918659 | - |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.identifier.external | 67238848 | - |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-INF | en_US |
item.grantfulltext | restricted | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos | - |
crisitem.author.dept | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.dept | Departamento de Informática y Sistemas | - |
crisitem.author.orcid | 0000-0003-2876-3301 | - |
crisitem.author.parentorg | IU Sistemas Inteligentes y Aplicaciones Numéricas | - |
crisitem.author.fullName | Peñate Sánchez, Adrián | - |
Colección: | Actas de congresos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.