Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/117933
Campo DC Valoridioma
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorMoreno-Noguer, Francescen_US
dc.contributor.authorAndrade-Cetto, Juanen_US
dc.contributor.authorFleuret, Françoisen_US
dc.date.accessioned2022-09-09T15:04:17Z-
dc.date.available2022-09-09T15:04:17Z-
dc.date.issued2014en_US
dc.identifier.isbn978-1-4799-7000-1en_US
dc.identifier.issn1550-6185en_US
dc.identifier.urihttp://hdl.handle.net/10553/117933-
dc.description.abstractWe introduce LETHA (Learning on Easy data, Test on Hard), a new learning paradigm consisting of building strong priors from high quality training data, and combining them with discriminative machine learning to deal with lowquality test data. Our main contribution is an implementation of that concept for pose estimation. We first automatically build a 3D model of the object of interest from high-definition images, and devise from it a pose-indexed feature extraction scheme. We then train a single classifier to process these feature vectors. Given a low quality test image, we visit many hypothetical poses, extract features consistently and evaluate the response of the classifier. Since this process uses locations recorded during learning, it does not require matching points anymore. We use a boosting procedure to train this classifier common to all poses, which is able to deal with missing features, due in this context to self-occlusion. Our results demonstrate that the method combines the strengths of global image representations, discriminative even for very tiny images, and the robustness to occlusions of approaches based on local feature point descriptors.en_US
dc.languageengen_US
dc.source2014 2nd International Conference on 3D Vision, 14918659, 08-11 December 2014en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject.otherPose estimationen_US
dc.subject.otherLow resolutionen_US
dc.subject.otherBoostingen_US
dc.titleLETHA: learning from high quality inputs for 3D pose estimation in low quality imagesen_US
dc.typeConference Paperen_US
dc.relation.conference2014 2nd International Conference on 3D Visionen_US
dc.identifier.doi10.1109/3dv.2014.18en_US
dc.identifier.scopus2-s2.0-84925340819-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue14918659-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.external67238848-
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextrestricted-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Colección:Actas de congresos
Unknown (8,02 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.