Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/117929
DC FieldValueLanguage
dc.contributor.authorRubio, A.en_US
dc.contributor.authorVillamizar, M.en_US
dc.contributor.authorFerraz, L.en_US
dc.contributor.authorPenate-Sanchez, Adrianen_US
dc.contributor.authorRamisa, A.en_US
dc.contributor.authorSimo-Serra, E.en_US
dc.contributor.authorSanfeliu, A.en_US
dc.contributor.authorMoreno-Noguer, F.en_US
dc.date.accessioned2022-09-07T18:01:59Z-
dc.date.available2022-09-07T18:01:59Z-
dc.date.issued2015en_US
dc.identifier.isbn978-1-4799-6923-4en_US
dc.identifier.issn1050-4729en_US
dc.identifier.urihttp://hdl.handle.net/10553/117929-
dc.description.abstractWe propose a robust and efficient method to estimate the pose of a camera with respect to complex 3D textured models of the environment that can potentially contain more than 100; 000 points. To tackle this problem we follow a top down approach where we combine high-level deep network classifiers with low level geometric approaches to come up with a solution that is fast, robust and accurate. Given an input image, we initially use a pre-trained deep network to compute a rough estimation of the camera pose. This initial estimate constrains the number of 3D model points that can be seen from the camera viewpoint. We then establish 3D-to-2D correspondences between these potentially visible points of the model and the 2D detected image features. Accurate pose estimation is finally obtained from the 2D-to-3D correspondences using a novel PnP algorithm that rejects outliers without the need to use a RANSAC strategy, and which is between 10 and 100 times faster than other methods that use it. Two real experiments dealing with very large and complex 3D models demonstrate the effectiveness of the approach.en_US
dc.languageengen_US
dc.relation.ispartofProceedings - IEEE International Conference on Robotics and Automationen_US
dc.sourceIEEE International Conference on Robotics and Automation (ICRA), 15285966, (02 July 2015)en_US
dc.subject1203 Ciencia de los ordenadoresen_US
dc.subject1206 Análisis numéricoen_US
dc.subject.otherThree-dimensional displaysen_US
dc.subject.otherSolid modelingen_US
dc.subject.otherEstimationen_US
dc.subject.otherComputational modelingen_US
dc.subject.otherCamerasen_US
dc.subject.otherTrainingen_US
dc.subject.otherFeature extractionen_US
dc.titleEfficient monocular pose estimation for complex 3D modelsen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConference proceedingsen_US
dc.relation.conference2015 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.identifier.doi10.1109/ICRA.2015.7139372en_US
dc.identifier.scopus2-s2.0-84938262734-
dc.identifier.isiWOS:000370974901058-
dc.contributor.orcid0000-0003-2876-3301-
dc.identifier.issueJune-
dc.relation.volume15285966en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.identifier.external67238849-
dc.utils.revisionen_US
dc.date.coverdateJuly 2015en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2876-3301-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNamePeñate Sánchez, Adrián-
Appears in Collections:Actas de congresos
Adobe PDF (3,94 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.