Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/117892
DC FieldValueLanguage
dc.contributor.authorSantana, Oliverio J.en_US
dc.contributor.authorHernández-Sosa, Danielen_US
dc.contributor.authorSmith, Ryan N.en_US
dc.date.accessioned2022-09-05T07:56:50Z-
dc.date.available2022-09-05T07:56:50Z-
dc.date.issued2022en_US
dc.identifier.issn1569-8432en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/117892-
dc.description.abstractDeep learning has drawn the attention of oceanographic researchers over the past few years, making the research community adopt computer vision techniques for oceanic mesoscale eddy detection on satellite altimetry gridded products. In this paper, we describe a convolutional neural network designed to detect eddies in satellite altimetry maps after being trained using segmentation masks provided by the OpenEddy detection algorithm. Against the current trend, in which increasingly complex neural networks are being proposed to address this problem, our design is relatively simple and yet provides competitive performance when compared to any of the previous deep learning methods reported in the literature. Furthermore, we show that our model is less sensitive to timely variations than the traditional models based on physical and geometric features defined by human experts, making it possible for our model to use the general data context to identify eddies that those traditional models would have missed. These results prove that overly complex neural network architectural designs are not required to solve the eddy detection problem on altimetry maps and generate a sufficiently good model for most practical applications in the field of marine sciences.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Applied Earth Observation and Geoinformationen_US
dc.sourceInternational Journal of Applied Earth Observation and Geoinformation [ISSN 1569-8432],v. 113, 102973, (Septiembre 2022)en_US
dc.subject120304 Inteligencia artificialen_US
dc.subject120326 Simulaciónen_US
dc.subject.otherConvolutional Neural Networken_US
dc.subject.otherDeep Learningen_US
dc.subject.otherOceanic Mesoscale Eddyen_US
dc.subject.otherRemote Sensingen_US
dc.subject.otherSatellite Altimetryen_US
dc.titleOceanic mesoscale eddy detection and convolutional neural network complexityen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jag.2022.102973en_US
dc.identifier.scopus85136531974-
dc.contributor.orcid0000-0001-7511-5783-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid7003605046-
dc.contributor.authorscopusid6507124168-
dc.contributor.authorscopusid15073550100-
dc.identifier.eissn1872-826X-
dc.relation.volume113en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateSeptiembre 2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,628
dc.description.jcr7,5
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-7511-5783-
crisitem.author.orcid0000-0003-3022-7698-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSantana Jaria, Oliverio Jesús-
crisitem.author.fullNameHernández Sosa, José Daniel-
Appears in Collections:Artículos
Adobe PDF (4,64 MB)
Show simple item record

SCOPUSTM   
Citations

15
checked on Mar 2, 2025

WEB OF SCIENCETM
Citations

14
checked on Mar 2, 2025

Page view(s)

100
checked on Jun 29, 2024

Download(s)

40
checked on Jun 29, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.