Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/116844
Campo DC Valoridioma
dc.contributor.authorSánchez, Een_US
dc.contributor.authorAntón Canalís, Luisen_US
dc.contributor.authorHernández Tejera, Francisco Marioen_US
dc.date.accessioned2022-07-13T09:12:09Z-
dc.date.available2022-07-13T09:12:09Z-
dc.date.issued2004en_US
dc.identifier.urihttp://hdl.handle.net/10553/116844-
dc.description.abstractEven after more than two decades of input devices development, many people still find the interaction with computers an uncomfortable experience. Efforts should be made to adapt computers to our natural means of communication: speech and body language. The PUI paradigm has emerged as a post-WIMP interface paradigm in order to cover these preferences. The aim of this paper is the proposal of a real time vision system for its application within visual interaction environments through hand gesture recognition, using general-purpose hardware and low cost sensors, like a simple personal computer and an USB web cam, so any user could make use of it in his office or home. The basis of our approach is a fast segmentation process to obtain the moving hand from the whole image, which is able to deal with a large number of hand shapes against different backgrounds and lighting conditions, and a recognition process that identifies the hand posture from the temporal sequence of segmented hands. The most important part of the recognition process is a robust shape comparison carried out through a Hausdorff distance approach, which operates on edge maps. The use of a visual memory allows the system to handle variations within a gesture and speed up the recognition process through the storage of different variables related to each gesture. This paper includes experimental evaluations of the recognition process of 26 hand postures and it discusses the results. Experiments show that the system can achieve a 90% recognition average rate and is suitable for real-time applicationsen_US
dc.languageengen_US
dc.subject120317 Informáticaen_US
dc.subject120314 Sistemas de control del entornoen_US
dc.subject.otherMan-Machine Interactionen_US
dc.subject.otherPerceptual user interfaceen_US
dc.subject.otherImage Processingen_US
dc.subject.otherHand gesture recognitionen_US
dc.subject.otherHausdorff distanceen_US
dc.titleHand gesture recognition for human-machine interactionen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceInt. Conf. on Computer Graphics, Visualization and Computer Vision (WSCG)en_US
dc.description.lastpage402en_US
dc.description.firstpage395en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0001-9717-8048-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameAntón Canalís, Luis-
crisitem.author.fullNameHernández Tejera, Francisco Mario-
Colección:Actas de congresos
Adobe PDF (330,62 kB)
Vista resumida

Visitas

38
actualizado el 15-jun-2024

Descargas

19
actualizado el 15-jun-2024

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.