Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/115495
DC FieldValueLanguage
dc.contributor.authorDéniz Suárez,Oscaren_US
dc.contributor.authorBueno, Gen_US
dc.contributor.authorBermejo, Een_US
dc.contributor.authorSukthankar, Ren_US
dc.date.accessioned2022-06-27T12:24:22Z-
dc.date.available2022-06-27T12:24:22Z-
dc.date.issued2011en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://hdl.handle.net/10553/115495-
dc.description.abstractVideo understanding has attracted significant research attention in recent years, motivated by interest in video surveillance, rich media retrieval and vision-based gesture interfaces. Typical methods focus on analyzing both the appearance and motion of objects in video. However, the apparent motion induced by a moving camera can dominate the observed motion, requiring sophisticated methods for compensating for camera motion without a priori knowledge of scene characteristics. This paper introduces two new methods for global motion compensation that are both significantly faster and more accurate than state of the art approaches. The first employs RANSAC to robustly estimate global scene motion even when the scene contains significant object motion. Unlike typical RANSAC-based motion estimation work, we apply RANSAC not to the motion of tracked features but rather to a number of segments of image projections. The key insight of the second method involves reliably classifying salient points into foreground and background, based upon the entropy of a motion inconsistency measure. Extensive experiments on established datasets demonstrate that the second approach is able to remove camera-based observed motion almost completely while still preserving foreground motion. © 2011 Elsevier Ltd. All rights reserved.en_US
dc.languageengen_US
dc.relation.ispartofPATTERN RECOGNITIONen_US
dc.sourcePattern Recognition, Volume 44, Issue 12,en_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherGlobal motion estimationen_US
dc.subject.otherAction recognitionen_US
dc.titleFast and accurate global motion compensationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patcog.2010.10.019en_US
dc.identifier.scopus2-s2.0-79959358944-
dc.identifier.isiWOS:000292947000007-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage2901en_US
dc.identifier.issue12-
dc.description.firstpage2887en_US
dc.relation.volume44, nº12en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.fullNameDéniz Suárez, Oscar-
Appears in Collections:Artículos
Adobe PDF (10,24 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.