Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/115493
DC FieldValueLanguage
dc.contributor.authorJoshi, RCen_US
dc.contributor.authorYadav, Sen_US
dc.contributor.authorDutta, MKen_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2022-06-27T12:09:20Z-
dc.date.available2022-06-27T12:09:20Z-
dc.date.issued2022en_US
dc.identifier.issn1011-0275en_US
dc.identifier.urihttp://hdl.handle.net/10553/115493-
dc.description.abstractBlood cell analysis is an important part of the health and immunity assessment. There are three major components of the blood: red blood cells, white blood cells, and platelets. The count and density of these blood cells are used to find multiple disorders like blood infections (anemia, leukemia, among others). Traditional methods are time-consuming, and the test cost is high. Thus, it arises the need for automated methods that can detect different kinds of blood cells and count the number of cells. A convolutional neural network-based framework is proposed for detecting and counting the cells. The neural network is trained for the multiple iterations, and a model having lower validation loss is saved. The experiments are done to analyze the performance of the detection system and results with high accuracy in the counting of the cells. The mean average precision is achieved when compared to ground truth provided to respective labels. The value of the average precision is found to be ranging from 70% to 99.1%, with a mean average precision value of 85.35%. The proposed framework had much less time complexity: it took only 0.111 seconds to process an image frame with dimensions of 640×480 pixels. The system can also be implemented in lowcost, single-board computers for rapid prototyping. The efficiency of the proposed framework to identify and count different blood cells can be utilized to assist medical professionals in finding disorders and making decisions based on the obtained report.en_US
dc.languageengen_US
dc.relation.ispartofUnicienciaen_US
dc.sourceUniciencia [ISSN 1011-0275], v. 36(1)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherConvolutional neural networken_US
dc.subject.otherDeep learningen_US
dc.subject.otherPlateletsen_US
dc.subject.otherRed blood cellsen_US
dc.subject.otherWhite blood cellsen_US
dc.titleAn Efficient Convolutional Neural Network to Detect and Count Blood Cellsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.identifier.doi10.15359/ru.36-1.28en_US
dc.identifier.isiWOS:000792122500003-
dc.identifier.issue1-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,236
dc.description.sjrqQ3
dc.description.esciESCI
dc.description.miaricds10,0
dc.description.erihplusERIH PLUS
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Adobe PDF (1,02 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.