Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/115046
DC FieldValueLanguage
dc.contributor.authorJimeno-Saez, Pen_US
dc.contributor.authorMartinez-Espana, Ren_US
dc.contributor.authorCasali, Jen_US
dc.contributor.authorPerez Sanchez, Julioen_US
dc.contributor.authorSenent-Aparicio, Jen_US
dc.date.accessioned2022-06-09T08:21:43Z-
dc.date.available2022-06-09T08:21:43Z-
dc.date.issued2022en_US
dc.identifier.issn0341-8162en_US
dc.identifier.urihttp://hdl.handle.net/10553/115046-
dc.description.abstractIn water bodies, sediment transport is a potential source of numerous negative effects on water resource projects and can damage environmental services. Two machine learning (ML) algorithms, the M5P and random forest (RF) models, have been explored for the first time as alternatives to the Soil and Water Assessment Tool (SWAT) model to estimate suspended sediment load (SSL) in the Oskotz river basin, a forested experimental basin in Navarra, northern Spain. In the ML models, streamflow and precipitation data were used to estimate daily SSL, testing different combinations of these inputs. The ML models were more accurate than the physically based hydrological SWAT model for all input scenarios tested at the daily scale. Moreover, although the SWAT results improved considerably at the monthly scale, the statistics obtained were generally inferior compared to the ML models. For the best combination of inputs, M5P demonstrated a superior ability to estimate SSL (R2 = 0.73, MAE = 135.04, RSR = 0.54, NSE = 0.71 and PBIAS = 5.19), compared to RF (R2 = 0.72, MAE = 143.39, RSR = 0.57, NSE = 0.67 and PBIAS = 11.60) and SWAT (R2 = 0.57, MAE = 181.24, RSR = 0.65, NSE = 0.57 and PBIAS = -1.27). The average sediment loads in winter, the season with the highest sediment generation in the Oskotz basin, were 2,094.04, 1,831.08 and 2,242.67 tonnes for M5P, RF and SWAT, respectively, compared to an observed SSL of 1,878.16 tonnes. These results indicate that M5P and RF are suitable models for simulating fluvial sediment production since they improved the results of the SWAT model, which also requires more time and data to set up and calibrate. However, since SWAT does not require observed streamflow as an input, it remains a useful model, achieving acceptable results in basins with limited streamflow data.en_US
dc.languageengen_US
dc.relationRTC-2017-6389-5en_US
dc.relationCGL2015-64284-C2-2-Ren_US
dc.relationSMARTLAGOONen_US
dc.relation.ispartofCatenaen_US
dc.sourceCatena [ISSN 0341-8162], n. 212en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject250605 Hidrogeologíaen_US
dc.subject250618 Sedimentologíaen_US
dc.subject120601 Construcción de algoritmosen_US
dc.subject.otherSWATen_US
dc.subject.otherMachine learningen_US
dc.subject.otherM5Pen_US
dc.subject.otherRandom foresten_US
dc.subject.otherSuspended sediment loaden_US
dc.subject.otherOskotzen_US
dc.titleA comparison of performance of SWAT and machine learning models for predicting sediment load in a forested Basin, Northern Spainen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.catena.2021.105953en_US
dc.identifier.scopus2-s2.0-85121935080-
dc.identifier.isiWOS:000790438100004-
dc.contributor.orcid0000-0003-4733-7236-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid0000-0002-1818-5811-
dc.description.lastpage11en_US
dc.description.firstpage1en_US
dc.relation.volume212en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages11en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,472
dc.description.jcr6,2
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.orcid0000-0002-2615-6076-
crisitem.author.fullNamePérez Sánchez, Julio-
Appears in Collections:Artículos
Adobe PDF (4,12 MB)
Show simple item record

Page view(s)

41
checked on May 11, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.