Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/115020
Campo DC Valoridioma
dc.contributor.authorChinea, Den_US
dc.contributor.authorMarrero, J. Cen_US
dc.contributor.authorRocha Martín, Juanen_US
dc.date.accessioned2022-06-08T11:36:55Z-
dc.date.available2022-06-08T11:36:55Z-
dc.date.issued1996en_US
dc.identifier.issn0240-2963en_US
dc.identifier.urihttp://hdl.handle.net/10553/115020-
dc.description.abstractIn this paper we study almost contact metric submersions with total space a locally conformal cosymplectic manifold. We obtain some results on the minimality of the fibers, transference of the In this paper we study almost contact metric submersions with total space a locally conformal cosymplectic manifold. We obtain some results on the minimality of the fibers, transference of the almost contact metric structure to the base manifold, the induced structure on the fibers, and on the integrability of the horizontal distribution. We obtain the local model of locally conformal cosymplectic submersion with totally umbilical fibers and we show that the total space of a locally conformal cosymplectic submersion cannot be a PC-manifold (i.e. a particular class of locally conformal cosymplectic manifold which is foliated by generalized Hopf manifolds). Although, we obtain examples of almost contact submersions (which are not Riemannian submersions) with total space a PC-manifold. These examples suggest us to define the D(03C3)-conformal cosymplectic submersions. Necessary and sufficient conditions for the fibers of a such submersion to be minimal and for the horizontal distribution to be completely integrable are derived. A particular class of D(03C3)-conformal cosymplectic submersion which is in certain sense, analogous to a trivial cosymplectic submersion is studied and is obtained that this submersion is the model of D(03C3)-conformal cosymplectic submersion with totally umbilical fibers and horizontal Lee vector field. Finally, we study D(03C3)-conformal cosymplectic submersions with total space a PC-manifold. We obtain all the D(03C3)-conformal cosymplectic submersions with totally geodesic fibers and total space a particular class of PC-manifolds. of almost contact submersions (which are not Riemannian submersions) with total space a PC-manifold. These examples suggest us to define the D(03C3)-conformal cosymplectic submersions. Necessary and sufficient conditions for the fibers of a such submersion to be minimal and for the horizontal distribution to be completely integrable are derived. A particular class of D(03C3)-conformal cosymplectic submersion which is in certain sense, analogous to a trivial cosymplectic submersion is studied and is obtained that this submersion is the model of D(03C3)-conformal cosymplectic submersion with totally umbilical fibers and horizontal Lee vector field. Finally, we study D(03C3)-conformal cosymplectic submersions with total space a PC-manifold. We obtain all the D(03C3)-conformal cosymplectic submersions with totally geodesic fibers and total space a particular class of PC-manifolds.en_US
dc.languageengen_US
dc.relation.ispartofAnnales de la Faculté des sciences de Toulouse : Mathématiquesen_US
dc.sourceAnnales de la Faculté des sciences de Toulouse : Mathématiques [ISSN 0240-2963], v. 4 (3), p. 473-517en_US
dc.subject120404 Geometría diferencialen_US
dc.subject.otherCosymplectic manifoldsen_US
dc.subject.otherLocally conformal cosymplectic manifoldsen_US
dc.subject.otherPC-manifoldsen_US
dc.subject.otherSubmersionsen_US
dc.subject.otherAlmost contact metric submersionsen_US
dc.subject.otherD(03C3)-conformal cosymplectic submersionsen_US
dc.titleAlmost contact submersions with total space a locally conformal cosymplectic manifolden_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.description.lastpage517en_US
dc.description.firstpage473en_US
dc.relation.volume4, 3en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages46en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR Análisis funcional y ecuaciones integrales-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3243-8256-
crisitem.author.parentorgDepartamento de Matemáticas-
crisitem.author.fullNameRocha Martín, Juan-
Colección:Artículos
Adobe PDF (3,36 MB)
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.