Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114789
Campo DC Valoridioma
dc.contributor.authorOrtega Zamorano, Franciscoen_US
dc.contributor.authorJerez, JMen_US
dc.contributor.authorMunoz, DUen_US
dc.contributor.authorLuque-Baena, RMen_US
dc.contributor.authorFranco, Len_US
dc.date.accessioned2022-05-18T08:51:39Z-
dc.date.available2022-05-18T08:51:39Z-
dc.date.issued2016en_US
dc.identifier.issn2162-237Xen_US
dc.identifier.urihttp://hdl.handle.net/10553/114789-
dc.description.abstractThe well-known backpropagation learning algorithm is implemented in a field-programmable gate array (FPGA) board and a microcontroller, focusing in obtaining efficient implementations in terms of a resource usage and computational speed. The algorithm was implemented in both cases using a training/validation/testing scheme in order to avoid overfitting problems. For the case of the FPGA implementation, a new neuron representation that reduces drastically the resource usage was introduced by combining the input and first hidden layer units in a single module. Further, a time-division multiplexing scheme was implemented for carrying out product computations taking advantage of the built-in digital signal processor cores. In both implementations, the floating-point data type representation normally used in a personal computer (PC) has been changed to a more efficient one based on a fixed-point scheme, reducing system memory variable usage and leading to an increase in computation speed. The results show that the modifications proposed produced a clear increase in computation speed in comparison with the standard PC-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in neurocomputational tasks and the suitability of both implementations of the algorithm for its application to the real world problems.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Neural Networks and Learning Systemsen_US
dc.sourceIEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 27(9), p. 1840-1850en_US
dc.subject330406 Arquitectura de ordenadoresen_US
dc.subject.otherEmbedded systemsen_US
dc.subject.otherField-programmable gate array (FPGA)en_US
dc.subject.otherHardware implementationen_US
dc.subject.otherMicrocontrollersen_US
dc.subject.otherSupervised learningen_US
dc.titleEfficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollersen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.identifier.doi10.1109/TNNLS.2015.2460991en_US
dc.identifier.scopus2-s2.0-84937708884-
dc.identifier.isiWOS:000382175500004-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue9-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.jcr6,108
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Robótica y Oceanografía Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.orcid0000-0002-4397-2905-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOrtega Zamorano,Francisco-
Colección:Artículos
Vista resumida

Citas SCOPUSTM   

66
actualizado el 08-dic-2024

Citas de WEB OF SCIENCETM
Citations

57
actualizado el 08-dic-2024

Visitas

68
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.