Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114789
Título: Efficient Implementation of the Backpropagation Algorithm in FPGAs and Microcontrollers
Autores/as: Ortega Zamorano, Francisco 
Jerez, JM
Munoz, DU
Luque-Baena, RM
Franco, L
Clasificación UNESCO: 330406 Arquitectura de ordenadores
Palabras clave: Embedded systems
Field-programmable gate array (FPGA)
Hardware implementation
Microcontrollers
Supervised learning
Fecha de publicación: 2016
Publicación seriada: IEEE Transactions on Neural Networks and Learning Systems 
Resumen: The well-known backpropagation learning algorithm is implemented in a field-programmable gate array (FPGA) board and a microcontroller, focusing in obtaining efficient implementations in terms of a resource usage and computational speed. The algorithm was implemented in both cases using a training/validation/testing scheme in order to avoid overfitting problems. For the case of the FPGA implementation, a new neuron representation that reduces drastically the resource usage was introduced by combining the input and first hidden layer units in a single module. Further, a time-division multiplexing scheme was implemented for carrying out product computations taking advantage of the built-in digital signal processor cores. In both implementations, the floating-point data type representation normally used in a personal computer (PC) has been changed to a more efficient one based on a fixed-point scheme, reducing system memory variable usage and leading to an increase in computation speed. The results show that the modifications proposed produced a clear increase in computation speed in comparison with the standard PC-based implementation, demonstrating the usefulness of the intrinsic parallelism of FPGAs in neurocomputational tasks and the suitability of both implementations of the algorithm for its application to the real world problems.
URI: http://hdl.handle.net/10553/114789
ISSN: 2162-237X
DOI: 10.1109/TNNLS.2015.2460991
Fuente: IEEE Transactions on Neural Networks and Learning Systems [ISSN 2162-237X], v. 27(9), p. 1840-1850
Colección:Artículos
Vista completa

Citas SCOPUSTM   

66
actualizado el 26-ene-2025

Citas de WEB OF SCIENCETM
Citations

58
actualizado el 26-ene-2025

Visitas

68
actualizado el 31-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.