Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114747
Título: Layer multiplexing FPGA implementation for deep back-propagation learning
Autores/as: Ortega Zamorano, Francisco 
Jerez, José Mª
Gómez, Iván
Franco, Leonardo
Clasificación UNESCO: 1203 Ciencia de los ordenadores
Palabras clave: Hardware implementation
FPGA
Supervised learning
Deep neural networks
Layer multiplexing
Fecha de publicación: 2017
Proyectos: 5770
Publicación seriada: Integrated Computer-Aided Engineering 
Resumen: Training of large scale neural networks, like those used nowadays in Deep Learning schemes, requires long computational times or the use of high performance computation solutions like those based on cluster computation, GPU boards, etc. As a possible alternative, in this work the Back-Propagation learning algorithm is implemented in an FPGA board using a multiplexing layer scheme, in which a single layer of neurons is physically implemented in parallel but can be reused any number of times in order to simulate multi-layer architectures. An on-chip implementation of the algorithm is carried out using a training/validation scheme in order to avoid overfitting effects. The hardware implementation is tested on several configurations, permitting to simulate architectures comprising up to 127 hidden layers with a maximum number of neurons in each layer of 60 neurons. We confirmed the correct implementation of the algorithm and compared the computational times against C and Matlab code executed in a multicore supercomputer, observing a clear advantage of the proposed FPGA scheme. The layer multiplexing scheme used provides a simple and flexible approach in comparison to standard implementations of the Back-Propagation algorithm representing an important step towards the FPGA implementation of deep neural networks, one of the most novel and successful existing models for prediction problems.
URI: http://hdl.handle.net/10553/114747
ISSN: 1069-2509
DOI: 10.3233/ICA-170538
Fuente: Integrated Computer-Aided Engineering [ISSN 1069-2509], vol. 24, n. 2, p. 171-185
Colección:Artículos
Adobe PDF (908,87 kB)
Vista completa

Citas SCOPUSTM   

71
actualizado el 17-nov-2024

Citas de WEB OF SCIENCETM
Citations

65
actualizado el 17-nov-2024

Visitas

66
actualizado el 27-jul-2024

Descargas

125
actualizado el 27-jul-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.