
Integrated Computer-Aided Engineering 24 (2017) 171–185 171
DOI 10.3233/ICA-170538
IOS Press

Layer multiplexing FPGA implementation for
deep back-propagation learning

Francisco Ortega-Zamoranoa,b,∗, José M. Jereza, Iván Gómeza and Leonardo Francoa
aDepartment of Computer Languages and Computer Science, University of Málaga, Málaga, Spain
bSchool of Mathematics and Computer Science, University of Yachay Tech, San Miguel de Urcuquí, Ecuador

Abstract. Training of large scale neural networks, like those used nowadays in Deep Learning schemes, requires long com-
putational times or the use of high performance computation solutions like those based on cluster computation, GPU boards,
etc. As a possible alternative, in this work the Back-Propagation learning algorithm is implemented in an FPGA board using
a multiplexing layer scheme, in which a single layer of neurons is physically implemented in parallel but can be reused any
number of times in order to simulate multi-layer architectures. An on-chip implementation of the algorithm is carried out using a
training/validation scheme in order to avoid overfitting effects. The hardware implementation is tested on several configurations,
permitting to simulate architectures comprising up to 127 hidden layers with a maximum number of neurons in each layer of 60
neurons. We confirmed the correct implementation of the algorithm and compared the computational times against C and Matlab
code executed in a multicore supercomputer, observing a clear advantage of the proposed FPGA scheme. The layer multiplex-
ing scheme used provides a simple and flexible approach in comparison to standard implementations of the Back-Propagation
algorithm representing an important step towards the FPGA implementation of deep neural networks, one of the most novel and
successful existing models for prediction problems.

Keywords: Hardware implementation, FPGA, supervised learning, deep neural networks, layer multiplexing

1. Introduction

Artificial Neural Networks (ANN) [12] are mathe-
matical models inspired in the functioning of the brain
that have been successfully applied to clustering and
classification problems in several domains. The Back-
Propagation algorithm (BP) introduced by Werbos in
1974 [46] and popularized through the work of Rumel-
hart et al. [38] is the most used learning procedure for
training feed-forward neural networks (FFNN) archi-
tectures for its application to classification and regres-
sion problems. It is a gradient descent based method
that minimizes the error between targets and network
outputs, computing the derivatives of the error in an
efficient way [25,36]. As a gradient descent algorithm

∗Corresponding author: Francisco Ortega-Zamorano, Departa-
mento de Lenguajes y Ciencias de la Computación, Universidad de
Málaga, Campus de Teatinos S/N, 29071, Málaga, Spain. E-mail:
fortega@lcc.uma.es.

the search for a solution can get stuck in local minima
but in practice the algorithm is quite efficient, and as
such it has been applied to a wide range of areas like
pattern recognition [23], medical diagnosis [37], stock
market prediction [35], etc.

Even if with the actual computational power it is
possible to train neural networks models relatively fast,
using large architectures and/or large patterns data sets
may require the use of parallel strategies to speed up
the training process. In particular, a recent popular-
ized model known as Deep Learning and usually ap-
plied to large training data sets, relies in a training
process that may take several days or even weeks to
be completed [5,17]. In this sense alternatives based
on cluster computing, GPUs and FPGAs are sensible
strategies, each of them having their benefits and draw-
backs [10,29,43,44]. In particular, Field Programmable
Gate Arrays (FPGA) [18] are reprogrammable silicon
chips, using prebuilt logic blocks and programmable
routing resources that can be configured to implement

ISSN 1069-2509/17/$35.00 c© 2017 – IOS Press and the author(s). All rights reserved

172 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

custom hardware functionality. Neuro-inspired mod-
els of computations have a very large degree of par-
allel processing of the information, and as such one
the main advantages of FPGA over previously men-
tioned alternatives (cluster computing and GPUs) for
implementing them is the fact of their intrinsic paral-
lelism. On the other hand, programming FPGA is rel-
atively more complex than the other models, and this
fact might explain that they have not been much uti-
lized yet for Deep Learning.

Several studies have analyzed the implementation
of neural networks models in FPGAs [19–21,24,32],
applying one of the two existing alternatives for their
implementation: off and on chip. In off-chip learn-
ing implementations [13,30] the training of the neu-
ral network model is performed externally usually in
a personal computer (PC) to which the FPGA is at-
tached, and only the synaptic weights are transmitted
to the FPGA that acts as a hardware accelerator. On
the other hand on-chip learning implementations in-
cludes both training and execution phases of the algo-
rithm [6,32,41] permitting the whole process to be car-
ried out in the FPGA board independently of an ex-
ternal device. Existing specific implementations of the
artificial neural network Back-Propagation algorithm
in FPGA boards include the works of [9,29,31,39].
In all of these works, the neural network architecture
is previously prefixed by the designer, as the number
of neurons and hidden layers is limited by the FPGA
resources available. Although recent advances on the
computational power of these boards have permitted an
increase in the size of the architectures, the number of
layers that can be implemented is still limited, and as
said above also this number should be prefixed before
its application.

For the previously mentioned reason, in this work a
layer multiplexing scheme for the on-chip implemen-
tation of BP algorithm in a VIRTEX-5 XC5VLX110T
FPGA board is introduced. This scheme consists in im-
plementing physically a single layer of neurons that
can be reused any number of times in order to simulate
architectures with any number of hidden layers [13].
The number of hidden layers that can be used in a neu-
ral architecture is only limited by the temporal con-
straint related to the execution time and to a maxi-
mum of 127 because of the memory resource design,
although it has been observed previously [3,8] and con-
firmed in the present work that the performance of the
BP algorithm is drastically reduced when the number
of layers is too large. In this respect, a new promis-
ing field named Deep Learning has attracted the at-

tention of several researchers and companies in re-
cent years, due to the great success of deep neural
networks architectures in several pattern recognition
contests [14,22,40]. Deep learning schemes requires
the use of additional strategies or modifications to the
standard BP algorithm in order to be applied success-
fully [45], but so far all existing alternative requires
heavy computational resources. The aim of this work
is to build a simple and flexible implementation of the
BP algorithm that may permit to simulate deep Back-
Propagation neural networks efficiently, contributing
to their study and application, and also opening new
strategies towards the simulation of deep learning neu-
ral networks.

The organization of the present work is as follows:
next section includes relevant implementation details
about the BP algorithm. The FPGA implementation is
described in Section 3, that contains the technical de-
tails of the implementation. The work continues with
a result section where the implementation is tested
and characterized, and finishes with the discussion and
conclusions.

2. The Back-Propagation algorithm

The Back-Propagation algorithm is a supervised
learning method for training multilayer artificial neu-
ral networks, and even if the algorithm is very well
known, we summarize in this section the main equa-
tions in relationship to the implementation of the Back-
Propagation algorithm, as they are important in order
to understand the current work.

Let’s consider a neural network architecture com-
prising several hidden layers. If we consider the neu-
rons belonging to a hidden or output layer, the activa-
tion of these units, denoted by yi, can be written as:

yi = g

⎛
⎝

L∑
j=1

wij · sj
⎞
⎠ = g(h), (1)

where wij are the synaptic weights between neuron i
in the current layer and the neurons of the previous
layer with activation sj . In the previous equation, we
have introduced h as the synaptic potential of a neuron.
The activation function used, g, is the logistic function
given by the following equation:

g(x) =
1

1 + e−βx
. (2)

The objective of the BP supervised learning algorithm
is to minimize the difference between given outputs

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 173

(targets) for a set of input data and the output of the
network. This error depends on the values of the synap-
tic weights, and so these should be adjusted in order to
minimize the error. The error function computed for all
output neurons can be defined as:

E =
1

2

p∑
k=1

M∑
i=1

(zi(k)− yi(k))
2, (3)

where the first sum is on the p patterns of the data set
and the second sum is on the M output neurons. zi(k)
is the target value for output neuron i for pattern k, and
yi(k) is the corresponding response output of the net-
work. By using the method of gradient descent, the BP
attempts to minimize this error in an iterative process
by updating the synaptic weights upon the presentation
of a given pattern. The synaptic weights between two
last layers of neurons are updated as:

Δwij(k) = −η
∂E

∂wij(k)

= η[zi(k)− yi(k)]g
′
i(hi)sj(k), (4)

where η is the learning rate that has to be set in ad-
vance (a parameter of the algorithm), g′ is the deriva-
tive of the sigmoid function and h is the synaptic po-
tential previously defined, while the rest of the weights
are modified according to similar equations by the in-
troduction of a set of values called the “deltas” (δ), that
propagate the error from the last layer into the inner
ones, that are computed according to Eqs (5) and (6).

The delta values for the neurons of the last of the N
hidden layers are computed as:

δNj = (SN
j)′[zj − SN

j] (5)

The delta values for the rest of the hidden layer neu-
rons are computed according to:

δlj = (Sl
j)

′ ∑wijδ
l+1
i . (6)

Training and validation processes
The training procedure is executed a certain number

of times (epochs) using the training patterns. In one
epoch, all training patterns are presented once in ran-
dom ordering, adjusting the synaptic weights in an on-
line manner. A well known and severe problem affect-
ing all predictive algorithms is the problem of overfit-
ting, caused by an overspecialization of the learning
procedure on the training set of patterns [11]. In order
to alleviate this effect, one straightforward alternative

is to split the set of available training patterns in train-
ing, validation and test sets. From these sets by the ap-
plication of Eq. (3) training, validation and generaliza-
tion error measures are obtained, measures that will be
denoted as Etr, Eval and Egen respectively. The train-
ing set will then be used to adjust the synaptic weights
according to Eq. (4), while the validation set is used to
control overfitting effects, storing in memory the val-
ues of the synaptic weights that have so far led to the
lowest validation error, so when the training procedure
ends, the algorithm returns the stored set of weights.
The test set is used to estimate the performance of the
algorithm in unseen data patterns. The generalization
ability (Gen) defined as Gen = 1 − Egen is a stan-
dard measure for the prediction accuracy of an algo-
rithm, obtaining its optimal value for Gen = 1 when
Egen = 0.

3. FPGA layer multiplexing scheme
implementation of the BP algorithm

The hardware implementation of the Back-Propaga-
tion algorithm is divided in 3 different processes: the
computation of the output of the neurons (S values),
the calculation of the deltas of each neuron (δ), and the
synaptic weight updating procedure. Given the logic of
the Back-Propagation algorithm, in which the S val-
ues are obtained in a forward manner (from the in-
put towards the output) while the deltas are computed
backwards, and that finally the weights updating is ex-
ecuted with the values previously obtained, the three
processes are sequentially implemented. It is possible
to perform the weight updating phase at the same time
that the deltas are computed but we have preferred to
separate all three processes to obtain a clearer design.

The S values of every layer are obtained as a func-
tion of the S values of the previous layer neurons ex-
cept for those from the first hidden layer which pro-
cesses the information of the current input pattern. On
the contrary, the δ values are computed backwardly,
i.e., the δ values associated to a neuron belonging to a
hidden layer are computed as a function of the δ values
of the a deeper hidden layer, except for the last hidden
layer which computes its δ values as a function of the
error committed on the current input pattern (cf. Eqs 5–
6). The updating process is carried out with the S and
δ values of every layer, so it is necessary to store these
values when they are computed to be used for the sys-
tem when they are required. Thus, the structure of the
Back-Propagation algorithm allows the whole process

174 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

L
ay
er
1

In
pu
ts

O
ut
p u
ts

L
ay
er
2

L
ay
er
N

(a) Standard Feed-forward neural network

M
ul
ti p
le
xi
ng
L
ay
e r

In
pu
ts

O
u t
pu
tsYes

No

If
CurrentLayer

=
MaxLayer ?

(b) Layer multiplexing scheme

Fig. 1. (a) Standard feed-forward neural network architecture. (b)
Layer multiplexing scheme for the simulation of deep feed-forward
neural network architectures.

to be implemented using a layer multiplexing scheme
but noting that forward and backward phases should
be considered separately, as S and δ values cannot be
computed in a single forward phase.

The deep design of the Back-Propagation algorithm
is based on a layer multiplexing scheme in which
only one layer is physically implemented being reused
3 × N times in order to simulate a whole neural net-
work architecture containing N hidden layers. Fig-
ure 1(a) shows the standard design of a feed-forward
neural network architecture where it can be observed
how the flow of information goes from the input to-
wards the output, in a way that the input of a layer of
neurons is the output of the previous layer. In a layer
multiplexing scheme, as shown in Fig. 1(b) the same
whole process is carried out but by reusing the struc-
ture of the single implemented layer.

The implementation of the layer multiplexing
scheme requires a precise control of which layer is sim-
ulated in every moment, and for this reason a regis-
ter called “CurrentLayer” is used. For each pattern, the
process starts with the forward phase in which the out-
put of the neurons are computed in response to the in-
put pattern. This first phase starts by introducing an in-
put pattern in the single multiplexing layer and by set-

ting the variable “CurrentLayer” set to 1. Then the neu-
rons’ outputs are computed, stored in the distributed
RAM memory and transmitted back to the input to cal-
culate the following layer outputs, and thus the vari-
able “CurrentLayer” is increased. The same process is
repeated sequentially until the “CurrentLayer” value is
equal to the maximum number of layers, previously de-
fined by the user and stored in the “MaxLayer” regis-
ter. When the last layer is reached the neurons output is
computed together with the error committed in the pat-
tern target estimation and these error values are stored
in a register for its use in the second phase. The sec-
ond phase involves the backward computation of the
delta values, and the first computation involves the cal-
culation of the delta values of the last layer. Once these
values are obtained, they are backwardly transmitted
to the previous layer in order to compute the delta val-
ues for these set of neurons, according to Eq. (6). With
these delta values a recurrent process is used to obtain
the delta values of the rest of the layers until the in-
put layer values are obtained (“CurrentLayer = 1”).
At this point the third phase is carried out in order to
update the synaptic weights, and finishing one pattern
iteration of the process.

In the following subsections details of the hardware
implementation are given.

Hardware implementation design

Figure 2 shows the general structure of the hard-
ware implementation of the Back-Propagation algo-
rithm. The whole structure has been divided in two
main modules in order to separate the communication
protocol and the memory resources of the FPGA (ex-
ternal block) from the module where the implementa-
tion of the algorithm is carried out composed by the
Architecture and Control blocks.

The External block logic depends specifically on
the type of communication protocol chosen for receiv-
ing the pattern data set and transmitting the synaptic
weights of the resultant model. The implementation
of the present algorithm in different applications and
boards require the use of a different external block, so
instead of giving specific details about it, we have pre-
ferred to describe its functionality that it might be more
helpful for future implementations.

In our case, the communication between the PC and
the FPGA was handled using a serial communication
protocol through the RS-232 port of the board in order
to manage the exchange of information. The reason for
this choice is that it can be implemented in VHDL and

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 175

Pattern

New_Pattern

Ready_Patterns
New_Valid
New_Train
V_T

Enable_Sent
Enable_Store

End
Ready_Sent
Ready_Store

Ready_Valid

Weigths

Clk_A
Clk_B Reset

Control
Block

Architecture
BlockExternal

Block

Ready_Train

Pattern

Data Conf. Set

Pattern

Weigths

Weigths

Specific
protocol logic

Ctrl set
Error

Fig. 2. Information flow exchange between the external module in
charge of the communication protocols and memory resources man-
agement, and the module composed by the control and architecture
blocks.

ported to other architectures quite easily in comparison
to other possibilities.

The functionality of the external block is separated
in two different processes: The first one was in charge
of storing and managing the input training data set in
order to present a different pattern every time that the
control block requires it; while the second process was
used for storing the synaptic weights once the learn-
ing process finishes (see Fig. 2). The hardware imple-
mentation of these two processes involves taking into
account a series of signals between the blocks that are
described in the appendix.

The internal module computes the neural model out-
put and modifies the synaptic weights according to
the training data presented to the network architecture.
This module carries out the whole process of the algo-
rithm and is composed by the control and architecture
blocks described below in Sections 3.1 and 3.2 respec-
tively.

3.1. Control block

The control block organizes the whole information
flow process within the FPGA board by sending and
processing the information from the architecture and

Begin

Count1
= #Train?

Count3
= #Epoch?

Count2
= #Valid?

E_Epoch
<

E_Min?

Count1=0, Count2=0,
Count3=0, E_Epoch=0

YessYes

NNoNo

YYesYes

NoNo

YessYes

YesYes

NoNo

NN

New_Valid
Count2++

NoNo

New_Train
Count1++

Ready_
Train
= ON? ooNo

YYesYesYY

Ready_
Valid
= ON? NoNo

YYesYesYY

Calculate Error

E_Epoch =
E_Epoch + Error

E_Min=E_Epoch
Store Network

VValidationn
process

Validation
process

Count1=0
Count2=0
Count3++
E_Epoch=0

V

Sent
stored Network

End

Fig. 3. Flow diagram for the operation of the control block for the
BP algorithm. Two processes (network training and validation) are
part of this block (see the text for more details).

pattern blocks. The structure of this block is organized
around two main processes: i) Network Training: the
main function of the control block is to manage two
activation signals that indicate whether a training or
a validation pattern should be sent to the architecture
block. In order to perform this action the control block
receives a signal value from the pattern block that in-
dicates the total number of training (#Train) and val-
idation (#Val) patterns set for the training procedure.
ii) Validation: a secondary process of the control block
regards the use of a validation set for monitoring the
training error, in order to control overfitting effects. In
essence, this process computes an error value using the
validation set of patterns to store the synaptic weight
values that have led to the smallest validation error
while the training of the network proceeds. At the end
of the training phase, this module retrieves the set of
weights that had led to the minimum validation error.
The implementation of the whole validation process in
the FPGA is detailed in Section 2.

When the computations start, the set of training pat-
terns are loaded into the external block that sends a
signal to the control block in order to start the execu-
tion of the algorithm. Figure 3 shows a flowchart of the
control block operations. At the beginning of the pro-
cess, a set of counters related to the number of training
and validation patterns, and number of epochs are ini-
tialized to zero. While the number of training patterns
for a given epoch is lower than the set value of training
patterns (#Train), the training procedure keeps sending
a signal to the pattern block indicating that a random
chosen training pattern should be sent to the architec-
ture block. The architecture block will then train the

176 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

Synaptic
weights

Neuron 1

Single layer

S Values

1 N

- Data Conf. Set
- Pattern
- New_Pattern
- Ctrl Set

- Synaptic weights
- Error
- Ready_Train
- Ready_Valid

Synaptic
weights

Neuron A

δValues

1 N

Si Sj

δ i δ j

Fig. 4. Schematic representation of the layer multiplexing procedure
used for the implementation of the BP algorithm.

network, sending back a signal (Ready_Train) to the
control block when the training of this pattern finishes,
increasing the trained pattern counter Count1. When
the value of this counter gets equal to the total number
of training patterns, then the validation process start.
The previous steps belong to a loop so they are re-
peated until the maximum number of epochs (#Epoch)
is reached.

3.2. Architecture block

The Fig. 4 shows a scheme of the architecture
block that performs the layer multiplexing procedure
by physically implementing a single layer of neurons.
This single layer is composed of A neurons blocks in
parallel implemented in order to compute the neuron‘s
output (S) and the δ values, that will later be used
for the update of the synaptic weights. The value of
A (limited by the board resources) will be the max-
imum number of neurons for any hidden layer. The
neuron blocks manage their own synaptic weights in-
dependently of the rest of the architecture, and thus

they require a RAM block attached to them. Details of
the neuron blocks are described below in Section 3.2.
The architecture block also includes memory blocks to
store the S and δ values computed for every layer and
also for the different input and output signals that are
described below.

The input signals are the pattern to be learned,
the signal that indicates a new pattern is introduced
(New_pattern), the configuration and control data sets,
including also the S and δ values. The configuration
data set includes the parameters set by the user to spec-
ify the neural network architecture, including the num-
ber of hidden layers, the number of neurons in each of
these layers, learning parameters, etc. The control data
set are signals that the control block needs for manag-
ing the process of the algorithm to activate the right
procedure in every moment. The output signals com-
prise the output (S) and the δ values for every layer,
the training error of the current pattern, and the ready
signals for the validation and training processes which
are integrated in the control data set.

The maximum number of layers has been deter-
mined by the size of the bus used to address the mul-
tiplexing layer scheme. In order to have a compromise
between the number of layers and used resources, we
have employed 7 bits in this bus, so the maximum num-
ber of layers is 27−1 = 127. Also, the maximum num-
ber of layers is delimited for the resources needed to
store the synaptic weights, according to the next equa-
tion:

Ni ∗N1 +N1 ∗N2 + . . .+NL−1 ∗NL−2

< Available RAM (7)

where Ni is the number of inputs, N1 is the number
of neurons in the first layer, N2 those corresponding to
the second layer and so on.

Neuron block

Each of the A neuron blocks manages its own synap-
tic weights, computing the S and δ values involved in
the Back-Propagation pattern updating procedure. The
word length to be chosen for representing the synap-
tic weights would depend on the available resources,
taking into account that obtaining a higher accuracy
requires a larger representation, which will imply an
increase in the number of LUTs per neuron (conse-
quently a reduced number of available neurons) and a
decrease in the maximum operation frequency of the
board. A synaptic weight is represented by a bit array

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 177

Table 1
Board resources needed for the implementation of a neuron block

Registers LUTs DSPs RAM block

Neuron 428 1007 1 n =
Avail.RAM
#neurons

with integer and fractional parts of length N1 and N2.
In our case the selected representation was N1 = 16
and N2 = 16, a representation that permits a relatively
high accuracy as the errors generated in a layer are
propagated to further ones. Board resources needed for
the implementation of a neuron using the chosen rep-
resentaion are shown in Table 1. The value for RAM
block shown in the last column of the table and indi-
cated by n is equal to the available RAM (a value that
depends on the FPGA board specifications) divided by
the maximum number of neurons allowed in the single
implemented layer. For the implementation described
in this work n = 2 = int(14860) as the available RAM is
148 blocks as indicated in Table 2, while the maximum
number of neurons is 60 (see Section 5).

The implementation of the neuron blocks has been
performed by dividing all the involved processes in five
main sub-blocks (Multiplier, Weight S, δ and Update
blocks). We describe below the detailed implementa-
tion of each one of these sub-blocks.

3.2.1. Multiplier block
The multiplier block computes the multiplication

operations involved in the Back-Propagation algo-
rithm, mainly between neuron activations and synaptic
weights values (see Eqs (1)–(6)). An efficient imple-
mentation of this operation is crucial in order to opti-
mize the board resources. A time-division multiplex-
ing scheme has been developed for an efficient use of
the resources, using only one multiplier per neuron and
thus performing sequentially the computation of sev-
eral products [34]. Multipliers can be implemented by
shifters and adders, following the approach presented
in [4] or by available specific DSP cores in the FPGA.
The DSP based strategy has been selected because the
system frequency in the FPGA can be up to four times
faster. The DSP uses a frequency two times larger than
the used by the neuron block, so that a product opera-
tion could be completed in one operation cycle of the
FPGA.

Figure 5 shows the multiplier block. A “state” signal
will indicate which of the processes (S, δ or updating)
is being executed at this moment, and two multiplex-
ers will select the correct values to a DSP multiplier,
which synchronized with a clock signal will send the
multiplication result to the rest of the blocks.

3.2.2. Weight block
Each of the weight blocks attached to every neu-

ron is in charge of writing and reading the synaptic
weights using a single distributed RAM memory mod-
ule. The memory module has three inputs (W/R, Addr,
and Value) managed by two multiplexers controlled by
the signal “state”. The first input (W/R) decides which
action to carry out (write or read), while the second in-
put (Addr) specifies the memory address, and the third
inputs is the value to store in case of a writing opera-
tion. The first multiplexer (the bottom one in the fig-
ure) allows writing (W/R = 1) only when the “state”
signal is Update, otherwise only reading (W/R = 0) is
possible. The second multiplexer (the one on top) se-
lects the address which will be used for the read/write
operation according to the “state” signal (S, δ, U). The
memory module also uses a frequency two times larger
than the used by the neuron block in order to complete
the operation in one cycle of the FPGA.

3.2.3. S block
The S block (see the right part of Fig. 5) com-

putes the output of a neuron as a function of the out-
puts of the previous layer which is introduced by the
signal “Vec_S”. The FSM (Finite State Machine) of
the block manages the steps required by the process
(see the top of the figure of the S-block). When the
S process starts, the control block activates the sig-
nal “Enable_S” and then the FSM change its stand-by
state (A = 0) to the A = 1 state.

In State A = 1 the block is in charge of computing
the sum of the product of synaptic weights and input
values (Eq. (1)). To perform this operation, two syn-
chronous counters (indicated by #1 and #2 in the fig-
ure) are used together with a set of logic elements for
performing the summation of product values. The sig-
nal “Index” of the adder #2 selects the corresponding
Sj value and the memory address (“MemAddr_S”) of
the synaptic weightwij (“Weight”). These selected val-
ues are sent in each cycle to the Multiplier Block us-
ing the signals (“Inp1Mul_S”) and (“Inp2Mul_S”) for
the wij and Sj values respectively. The result of the
multiplication is returned through the signal “OutMul”
and the counter #1 computes the summation of the
multiplications until the “Index” signal is equal to the
number of neurons in the previous layer (Index =
NuexLayer), in this moment the “h” value (synaptic
potential) is computed and the FSM changes to A = 2
state.

When the FSM is in the A = 2 state, the S block
computes every neuron’s output applying the transfer

178 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

OutMul

NeuxLayer = Index

Vec_S

Layer

Vec_LayerMem

Index

LayerMem

Weight

A=1

A=2

A=0

en
a
b a+b

h

1

S

A=1

en
a
b a+b

A=1

Target

Ready_Tf

Inp1Mul_S

Inp2Mul_S

MemAddr_S

A

A=2

FSM

A=3
Clk_a

Enable
_SReset

NeuxLayer

-en

en
a a Error

A=3

Clk_a
Er
ror

en
a a S

A=3

Clk_a

en
a a Ready_S

A=3

Clk_a

+

2
1

2
1

Sj

A

a
b

a·b

S
δ Inp1Mul_δ

Inp1Mul_S

Inp2Mul_S

Inp1Mul_U

Inp2Mul_U

Inp2Mul_δ

State

U

S
δ
U

Clk_b

OutMul

DSP

Tr
an
sfe
r F
un
c.

Addr

W/R

S
δ MemAddr_δ

MemAddr_S

MemAddr_U

State

U

Clk_b

Memory
Module

U
X

W/R_U
0

WeightOut

S BlockMultiplier
Block

Weight
Block

Enable_S

#1

#2

Ready_Tf

Weight_U Value

Clk_a

Clk_a

Fig. 5. Hardware details for the S-block, synaptic weights and multiplier blocks used for the implementation of a single neuron (See a note
legend at the bottom of Fig. 6 for symbol reference).

function used (a sigmoid function in this case) to the
synaptic potential previously obtained. This procedure,
that for FPGA is not as straightforward as in a standard
PC, is carried out using a lookup table containing tab-
ulated values of the function plus a linear interpolation
scheme. Further details of this procedure have been al-
ready explained in detail in Ref. [34]. Once the S value
is obtained, the error for the estimation of the current
pattern is computed, a ready signal (“Ready_Tf”) is
activated and the FSM change its state to A = 3. In
the last state (A = 3), the output signals of the block
(“Error”, “S” and “Ready_S”) are stored in three reg-
isters for their further use by other processes.

3.2.4. δ block
Figure 6 shows the δ block which is in charge of

computing the δ values of the current layer. The δ pro-
cess begins with the activation of signal “Enable_δ”
and the FSM of the delta block switches from the ini-
tial inactive state (A = 0) to A = 1. In this state,
the summation involved in the delta process Eqs (5)
and (6) is computed. For this process it is necessary to
design a crossed memory access since the δ block of
a neuron requires the synaptic weight values of other
neurons, and for this reason a decreasing counter (#1)
is used. A second counter (#2) selects the memory ad-

dress (“MemAddr_δ”) using the “Index” signal, in a
similar way as indicated for the case of the S block.

The corresponding δ values (δl+1
i) and the synaptic

weight (wij) (see Eqs (5) and (6)) are chosen accord-
ing to the value of the “Index_δ” signal of the counter
#1 using the signals “Vec_δ” and “Vec_weight”. The δ
and synaptic weights values are sent to the multiplier
block by the “Inp1Mul_S” and “Inp2Mul_S” signals
respectively in order to compute the required multipli-
cation for the sum of products which is carried out in
the synchronous counter #3 by the “OutMul”. This op-
eration finishes when the “Index” signal is equal to the
identifier of the neuron (“N”), and at this moment the
FSM changes its state from A = 1 to A = 2.

When the FSM is in state A = 2, the δ block com-
putes the derivative of the function (S′

j = Sj ·(1−Sj)).
The right value of Sj is selected using the N signal
value from the “V ec_S” signals which contains the S
value of all neurons. The computations on this state can
be done in only one clock cycle, and thus in the next
cycle the FSM switch its state to A = 3.

The state A = 3 calculates the multiplication be-
tween the result of the summation and the derivatives.
This procedure is carried out by the multiplier block
by the “Inp1Mul_δ” and “Inp2Mul_δ” signals and the
multiplication is returned by the “OutMul′′ signal. In

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 179

A=4 A=3

Index=NA=1

A=0
Enable_δ

∑

en
a
b a+b

A=1
Index

en
a
b
a+b

A=1

Index_δ

1
N

en
a
b a-b

A=1

1
N

Vec_δ

Vec_Weight

Vec_S
-

N

S

Layer

Vec_LayerMem
LayerMem

+ MemAddr_δ

OutMul

1

Inp2Mul_δ

Inp1Mul_δ
1
2
3

1
2
3

A

A=3 A=2

FSM

A=1A=0

Reset

A

Enable_Inc

Ot
he
rw
ise

Layer = NumLayer

Vec_S

Index
en
a
b a+b

1

A=2
0

Vec_δ

η

OutMul

Weight
+ Weight_U

Layer

Vec_LayerMem
LayerMem + MemAddr_U

Inp1Mul_U

Inp2Mul_U

en
a a Ready_U1

A=3

en
a a1

A=3

1
2

1
2

Enable_Inc

Layer

NumLayer

Clk_a

Clk_a
Clk_a

Clk_a

S

δ

A=2

Ena
ble_
δ

en
a a Ready_δ1

A=4

Clk_a

en
a a δ

A=4

Clk_a

Clk_a

Clk_a

Clk_a

FSM

Reset
δ Block Update

Block

A

0

*Note: Interconnection inside of the neuron

Connection with the external to the neuron

#1

W/R_U

#2#2 #3

A

Clk_a

Fig. 6. Hardware details for the δ and Update blocks used for the implementation of a single neuron.

the last state (A = 4), the output signals of the block
(“δ” and “Ready_δ”) are stored in three registers for
further usage.

3.2.5. Update block
The update block is in charge of modifying the

synaptic weights for the whole architecture after an it-
eration of the algorithm has been carried out. Figure 6
shows the Update block in which it can be observed a
4-state FSM. The state A = 0 is the resting state that it
is modified when the signal “Enable_U” is active. In-
side a loop the states A = 1 and A = 2 of the FSM
are used for reading the current synaptic weights and
writing the updated ones for all simulated hidden lay-
ers (Layer = NumLayer). The FSM switches to state
A = 3 when the whole process is finished.

In state A = 1, the Update block carries out the
request of every synaptic weight using a counter that
generates the signal “Index” for reading the stored
synaptic weights, in an analogous way as it has been
explained before for the S Block. Also, in this state the
multiplication between Si and δi (see Eq. (4)) is per-
formed. Both values are selected from their respective

vectors “Vec_S” and “Vec_δ” using two multiplexers
controlled for the “Index” signal.

When the FSM is in state A = 2, the multipli-
cation between the learning rate (η) and the result
of the multiplication obtained in the previous state is
computed. This result is added to the current synap-
tic weight value to obtain the updated values. In or-
der to store these values the Update block must acti-
vate a write/read signal (“W/R_U”) to activate the in-
put W/R of the memory module. In the last FSM state
(A = 3), the Update block activate a signal indicating
that the whole process is completed (“Ready_U”).

4. Results

We present in this section results from the imple-
mentation of the Back-Propagation algorithm in a Xil-
inx Virtex-5 board. Table 2 shows some characteris-
tics of the Virtex-5 XC5VLX110T FPGA, indicating
its main logic resources. VHDL [2,4] (VHSIC Hard-
ware Description Language) language was used for
programming the FPGA, under the “Xilinx ISE De-
sign Suite 12.4” environment using the “ISim M.81d”

180 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

Table 2
Main specifications of the Xilinx Virtex-5 XC5VLX110T FPGA
board

Device Slice Slice Bonded Block
Registers LUTs IOBs RAM

Virtex-5 69, 120 69, 120 34 148
XC5VLX110T

simulator. The operation system frequency was in-
creased from the 100 MHZ board oscillator frequency
to 200 MHZ through the use of a PLL, as the efficiency
of the code allowed this configuration.

To verify the correct FPGA implementation of the
model, several test cases were analyzed comparing the
results with those obtained from C and Matlab imple-
mentations and with previously published results. In
particular, to assess the advantages of using an FPGA
board, we compare the results testing several network
architectures under C and Matlab programming lan-
guages executed in the Picasso cluster that belongs to
the Spanish Supercomputing Network.1 The cluster is
formed by a set of computation nodes unified behind a
single Slurm queue system, consisting mainly of 7 HP
DL980 nodes of 80 cores and 2 TB RAM computers,
32 HP SL230 nodes with 16 cores and 64 GB of RAM,
42 HP DL165 nodes with 24 cores and 96 GB of RAM,
and 16 HP SL250 nodes with 2 GPUs each, totalling
63 TFLOP/s. Own generated code in C and Matlab
languages were used for the comparison, noting that
the C programming language is considered among the
fastest that can be used in a PC [7,16] while Matlab is
a language optimized for operations involving matri-
ces and vectors useful for neural network implementa-
tions [27,42]. All the tests were carried out using a 50-
20-30 splitting for the training, validation and general-
ization sets respectively, with a learning rate (η) value
fixed to 0.2, and using data from the well-known Iris
set [28]. The generalization set contains only patterns
not used during the learning process, and it is used to
test the prediction capacity of the algorithm, known as
Generalization ability (Gen).

Figure 7 shows the evolution for the training (Etr)
and validation (Eval) errors for the FPGA and the mul-
ticore (MC) cluster based implementation. The archi-
tectures used contained one hidden layer (a), two (b),
and three (c), including five neurons in all hidden lay-
ers, and three neurons in the output that corresponds to
the three classes of the Iris problem. In all three graphs,
two vertical lines indicate the time at which the mini-

1http://www.scbi.uma.es/.

0 100 200 300 400 500 600 700 800 900 1000
Number of epochs

0

0.1

0.2

0.3

0.4

M
ea

n
sq

ua
re

 e
rr

or

A Gen FPGA = 0.87
A Gen MC= 0.9

FPGA Etr
FPGA Eval
MC Etr
MC Eval
min(FPGA Eval)
min(MC Eval)

(a) One hidden layer

0 100 200 300 400 500 600 700 800 900 1000
Number of epochs

0

0.1

0.2

0.3

0.4

M
ea

n
sq

ua
re

 e
rr

or

A Gen FPGA = 0.97
A Gen MC= 0.933

FPGA Etr
FPGA Eval
MC Etr
MC Eval
min(FPGA Eval)
min(MC Eval)

(b) Two hidden layers

0 100 200 300 400 500 600 700 800 900 1000
Number of epochs

0

0.1

0.2

0.3

0.4

M
ea

n
sq

ua
re

 e
rr

or

Gen FPGA = 0.97!
Gen MC= 0.967!

FPGA Etr
FPGA Eval
MC Etr
MC Eval
min(FPGA Eval)
min(MC Eval)

(c) Three hidden layers

Fig. 7. Training (Etr) and validation (Eval) errors evolution for the
two implementations (FPGA, MC) when the Iris data set is learned
depending on the number of layer of the neural architecture with five
neurons in each hidden layer.

mum of the validation error is obtained, point when the
Generalization ability (Gen) is measured for both im-
plementations (the obtained values are also indicated in
the graph). It can be appreciated from the error curves
that for the FPGA implementation case some larger os-
cillations appear, and this is due to rounding effects
because of the size of the fixed point representation
used. In terms of the level of prediction accuracy ob-
tained these oscillations do not degrade it, and on the
contrary in some cases even leads to larger values, as
it has been observed previously in FPGA implementa-
tions [31,33], and in several works where it was con-
cluded that certain level of noise might be beneficial
for improving learning times, fault tolerance and pre-
diction accuracy [1,15,26].

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 181

Table 3
Generalization ability for the Iris data set for neural network archi-
tectures with different numbers of hidden layers for MC and FPGA
implementations

Lay. Type implementation
MC FPGA

Layer multiplexing Fixed layers
1 0.937 ± 0.058 0.939 ± 0.056 0.940 ± 0.057
2 0.951 ± 0.031 0.944 ± 0.036 0.947 ± 0.035
3 0.951 ± 0.029 0.949 ± 0.039 –
5 0.933 ± 0.100 0.937 ± 0.039 –
7 0.870 ± 0.201 0.884 ± 0.080 –
10 0.527 ± 0.294 0.599 ± 0.265 –
15 0.306 ± 0.055 0.312 ± 0.096 –
20 0.305 ± 0.046 0.310 ± 0.102 –
127 0.307 ± 0.049 0.309 ± 0.093 –

Table 3 shows the generalization ability obtained
for several architectures with different numbers of hid-
den layers for the FPGA and MC implementations.
The first column indicates the number of hidden layer
present in the architecture, the second column shows
the generalization obtained using the MC implementa-
tion (mean and standard deviation computed over 100
independent runs using C code), while third and fourth
columns shows the results for two different FPGA
implementations: the layer multiplexing scheme pro-
posed in this work and the fixed layer scheme utilized
in Ref. [31] (only available for architectures with one
and two hidden layers). The number of neurons in each
of the hidden layers was fixed to five and the number
of epochs set to 1000. The results clearly show that for
architectures with 15 or more hidden layers the gener-
alization ability gets much reduced, reaching a random
expected value for a problem with three classes.

From the results shown in Table 3 it can be seen
that the obtained values for generalization are approx-
imately similar for the three implementations consid-
ered, and that regarding the number of hidden layers
present in the neural architectures the performance of
the BP algorithm is relatively stable for architectures
with up to 5 hidden neuron layers point from which
the generalization accuracy starts to decrease to reach
the level expected for random choices for a number of
layers equal to 15.

Figure 8 shows the computation times (in μs and in
logarithmic scale) and number of clock cycles (#cc)
involved in the three processes related to the opera-
tion of the BP algorithm for FPGA, MC-C, and MC-
Matlab implementations: Output, Delta and Updating
processes when learning a single pattern. The graph
shows the results for one, ten and twenty hidden lay-
ers with five neurons per layer. The expressions shown
on top of the figure for the number of clock cycles in-

1 10 20
Number of hidden layers

10-1

100

101

102

103

104

105

106

Ti
m

e
(7

s)

FPGA

MC-C

MC-Mat

FPGA

MC-C

MC-Mat

FPGA

MC-C

MC-Mat

Update #cc = 2 + 5"(# layer+2) + (N
i
+N

1
+N

2
+...)

Delta #cc = 4"(# layer+2) + (N
i
+N

1
+N

2
+...)

Output #cc = 3 + (N
i
+N

1
+N

2
+...)

Fig. 8. Computation times and number of cycles involved in the three
processes related to the operation of the BP algorithm for the FPGA,
PC-C and PC-Matlab implementations: Output, Delta and Updating
processes.

volved in the three phases are valid for any architecture
when using the FPGA implementation, where the val-
ues of Nj should be replaced by the number of neurons
in each of the layers.

Figures 9(a) and (b) show execution times for the
complete BP learning procedure (in seconds in a log-
arithmic scale for 1000 epochs) for the FPGA im-
plementation and MC-C (Fig. 9(a)) and MC-Matlab
(Fig. 9(b)) as a function of the number of neurons for
one and ten hidden layers architectures (this number
of neurons is fixed for all layers). In both graphs it is
also shown the number of times that the FPGA imple-
mentation is faster in comparison to the MC one for
C and Matlab code respectively (see the right y-axis
scale). We also show in Fig. 10 the number of times
that the FPGA implementation is faster than the MC-
C (Fig. 10(a)) and MC-Matlab (Fig. 10(b)) codes as a
function of the number of layers in the deep architec-
tures for different number of neurons in each of these
layers.

In order to obtain a fair comparison between the
FPGA and PC the computation time of the FPGA has
been measured without taking account the communi-
cation time due to this time could change depending
on the type of protocol used in the communication. So,
the computation time is calculated from the input data
are completely sent to the neural computation model is
computed in the FPGA.

From the results shown in Figs 9(a) and 10(a), it
can be seen that the number for times that the FPGA
implementation is faster than the MC-C increases lin-
early with the number of neurons in each of the lay-

182 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

1 2 3 4 5 6 7 8 9 10 11 12
Neurons

10-3

10-2

10-1

100

101

102

103

Ti
m

e(
s)

0
5
10
15
20
25
30

50

100

Ti

m
es

#times 1 layer
#times 10 layer

Time FPGA 1 Layer
Time FPGA 10 Layer
Time MC-C 1 Layer
Time MC-C 10 Layer

(a)

1 2 3 4 5 6 7 8 9 10 11 12
Neurons

10-3

10-2

10-1

100

101

102

103

Ti
m

e(
s)

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

es

#times 1 layer
#times 10 layer

Time FPGA 1 Layer
Time FPGA 10 Layer
Time MC-Mat 1 Layer
Time MC-Mat 10 Layer

(b)

Fig. 9. Computational time and number of times that the FPGA im-
plementation is faster than the MC-C (a) and MC-Matlab (b) as a
function of the number of neurons in each layer for the case of one
and ten hidden layers architectures (see text for details).

ers, reaching 27 times for the case of using 60 neurons
in each layer, noting that these values are kept con-
stant for different number of hidden layers. In relation-
ship to the computational times between the FPGA and
the MC-Matlab implementation the advantage of us-
ing the FPGA decreases as the number of neurons in
each layer increases, and this effect can be explained
because Matlab uses matrix-based computations that
are more efficient for heavier computations, but noting
that the number of times that the FPGA is faster than
MC-Matlab converges asymptotically to 60 times ap-
proximately.

To test the correct implementation of the deep learn-
ing scheme of the BP algorithm in the FPGA board,
we measured training, validation and test errors on a
set of benchmark problems from the UCI database [28]
frequently used in the literature. Table 4 shows the ac-
curacy (generalization ability) values obtained for both
implementations of the algorithm for eleven bench-

Table 4
Generalization ability for PC and FPGA implementations obtained
for eleven benchmark data sets

Function I O PC FPGA
Diabetes 8 2 0.784 ± 0.028 0.793 ± 0.023
Cancer 9 2 0.958 ± 0.013 0.954 ± 0.011
Statlog 13 2 0.784 ± 0.023 0.776 ± 0.022
Climate 18 2 0.933 ± 0.012 0.944 ± 0.015
Ionosphere 34 2 0.874 ± 0.001 0.864 ± 0.001
HeartC 35 2 0.789 ± 0.035 0.801 ± 0.028
Iris 4 3 0.923 ± 0.019 0.926 ± 0.020
Bal.Sca. 4 3 0.869 ± 0.011 0.873 ± 0.012
Seeds 7 3 0.976 ± 0.017 0.965 ± 0.016
Wine 13 3 0.886 ± 0.022 0.880 ± 0.024
Glass 10 6 0.938 ± 0.025 0.914 ± 0.022

Average 0.8830 ± 0.0187 0.8808 ± 0.0176

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Layers

10

15

20

25

30

Ti

m
es

Neurons:
5
10
15
20
25
30
35
40
45
50
55
60

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Layers

0

250

500

750

1000

1250

1500

Ti

m
es

Neurons:

58.8

5
10
15
20
25
30
35
40
45
50
55
60

(b)

Fig. 10. Number of times that the FPGA implementation is faster
than the MC-C (graph a) and MC-Matlab (graph b) as a function of
the number of layers in the deep architectures for different values for
the number of neurons in each of these layers.

mark problems. The first three columns indicate the
data set name, number of inputs and outputs respec-
tively, while the last two columns shows the general-
ization ability obtained using neural network architec-
tures with 5 neurons in the single hidden layer. This
choice of number of neurons permits the comparison
with published results [31]. For carrying out the simu-
lations a training, validation and test sets splitting was

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 183

used in a 50-20-30% scheme; in which the validation
set was used to find the number of epochs for evaluat-
ing the test error, the maximum number of epochs was
set to 1000, and the learning rate was equal to 0.2. 100
independent runs were computed for each benchmark
data set and the average and standard deviation of the
obtained results are reported in the table. The results
indicate a correct functioning of the algorithm, noting
that the small observed differences can be related to
the methodology of computation and to the different
number representation used in the two analyzed cases.

5. Discussion and conclusions

We have successfully implemented the Back Propa-
gation algorithm in an FPGA board using a novel layer
multiplexing on-chip learning scheme that includes a
validation procedure in order to prevent overfitting ef-
fects. The layer multiplexing scheme utilized permits
to simulate a several hidden layer neural network with
only implementing physically a single hidden layer of
neurons. The main advantage of this approach is that
very deep neural network architectures can be analyzed
through a simple and flexible framework with very ef-
ficient resource utilization. A modular design has been
utilized in a hardware implementation that incorpo-
rates strategies like multiplexing of the multipliers, op-
timized memory access and efficient data type repre-
sentation, with the aim of producing a flexible and re-
source efficient tool for the study of multi-layer neural
architectures.

In terms of computational times, the implementa-
tion has been tested and compared to multicore (MC)
C and Matlab codes executed in a 97 nodes supercom-
puter. In comparison to the MC-C code, the number of
times that the FPGA implementation is faster increases
linearly as the number of neurons in each of the lay-
ers increases, while being almost constant for different
number of hidden layers, reaching a value of 27 when
60 neurons are included in each of these hidden lay-
ers. The same comparison but for the case of FPGA
and MC-Matlab implementations shows a different be-
haviour as the advantage of the FPGA decreases as the
number of neurons in each layer increases. This advan-
tage also has a slight decrease as the number of layers
is increased, but in all analyzed cases being larger than
58.8 times.

The layer multiplexing scheme used permits in
principle the simulation of networks with any num-
ber of hidden layers, but due to memory resource

design the maximum number of layers in the cur-
rent implementation is 127. Regarding the maximum
number of neurons allowed in each of the hidden
layer, hardware resources of the FPGA board used
(VIRTEX-5 XC5VLX110T) pose a limit of 60 neu-
rons. The results obtained confirm the degradation of
the Back-Propagation algorithm for very deep archi-
tectures comprising 15 or more hidden layers, as al-
most a random behavior is obtained for deeper net-
works (see Table 3). Understanding and improving the
training of deep architectures is a big present chal-
lenge, and we believe that the present work may con-
tribute to their understanding as we have introduced
a flexible tool for carrying this analysis that we plan
to tackle in the near future. Further, it is worth noting
that so far FPGAs have not been much applied to Deep
Learning approaches, and we believe that high devel-
oping times are to blame. In this sense, we hope that
this work can help other researchers on the applicac-
tion of FPGA based approaches, as the intrinsic paral-
lelism of these devices makes them a suitable technol-
ogy for implementing neuroinspired models.

Acknowledgments

The authors acknowledge support from Junta de An-
dalucia through grant P10-TIC-5770, and from CICYT
(Spain) through grants TIN2010-16556 and TIN2014-
58516-C2-1-R (all including FEDER funds). The au-
thors thankfully acknowledge the computer resources,
technical expertise and assistance provided by the
SCBI (Supercomputing and Bioinformatics) center of
the University of Málaga, Spain.

Appendix

Detail of signals used between blocks (see Fig. 2 and
related text)

– Ready_Patterns: Active (‘1’) when the pattern
data set is ready to be learned.

– New_Valid: A pulse (one clock cycle active)
when a validation pattern is required for the archi-
tecture.

– New_Train: A pulse when a training pattern is re-
quired for the architecture.

– V_T: A signal which defines the process (valida-
tion or training) that is being executed.

– Enable_Sent: A pulse when the stored synaptic
weights in the external block must be send from
the external block to the user.

184 F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning

– Enable_Store: A pulse when the synaptic weights
of the neurons must be stored in the external
block.

– End: Active when the process is finished.
– Ready_Sent: A pulse that is sent when the ex-

ternal block has finished sending the synaptic
weights to the external device.

– Ready_Store: A pulse that is sent when the exter-
nal block has finished storing the synaptic weights
of every neuron.

– Data_Conf_Set: Variables of configuration of the
model (number of layers, number of neuron for
layer, number of patterns, etc).

– Pattern: Variable that introduces a new training or
validation pattern when New_Train or New_Valid
is active. respectively.

– New_Pattern: Pulse when a pattern is introduced.
– Weights: Synaptic weights of every neuron to be

stored.

References

[1] G. An, The effects of adding noise during backpropagation
training on a generalization performance, Neural Computa-
tion 8(3) (Apr 1996), 643–674.

[2] P. Ashenden, The Designer’s Guide to VHDL, Volume 3, Third
Edition (Systems on Silicon) (Systems on Silicon), 3 edition,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2008.

[3] Y. Bengio, P. Simard and P. Frasconi, Learning long-term de-
pendencies with gradient descent is difficult, IEEE Transac-
tions on Neural Networks 5(2) (Mar 1994), 157–166.

[4] P.P. Chu, RTL Hardware Design Using VHDL: Coding for
Efficiency, Portability, and Scalability, John Wiley & Sons,
2006.

[5] C. Clark and A.J. Storkey, Training deep convolutional neu-
ral networks to play go, in: Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37 of JMLR
Proceedings, JMLR.org (2015), 1766–1774.

[6] A. Dinu, M. Cirstea and S. Cirstea, Direct neural-network
hardware-implementation algorithm, IEEE Transactions on
Industrial Electronics 57(5) (May 2010), 1845–1848.

[7] B. Fulgham, The computer language benchmarks game, http:
//benchmarksgame.alioth.debian.org/.

[8] X. Glorot and Y. Bengio, Understanding the difficulty of train-
ing deep feedforward neural networks, in: Proceedings of
the International Conference on Artificial Intelligence and
Statistics (AISTATS’10), Society for Artificial Intelligence and
Statistics, (2010), 249–256.

[9] A. Gomperts, A. Ukil and F. Zurfluh, Development and imple-
mentation of parameterized fpga-based general purpose neu-
ral networks for online applications, IEEE Transactions on
Industrial Informatics 7(1) (Feb 2011), 78–89.

[10] B. Guthier, S. Kopf, M. Wichtlhuber and W. Effelsberg,
Parallel implementation of a real-time high dynamic range
video system, Integrated Computer-Aided Engineering 21(2)
(2014), 189–202.

[11] D.M. Hawkins, The problem of overfitting, Journal of Chem-
ical Information and Computer Sciences 44(1) (2004), 1–12.

[12] S. Haykin, Neural Networks: A Comprehensive Foundation,
2nd edition, Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1998.

[13] S. Himavathi, D. Anitha and A. Muthuramalingam, Feedfor-
ward neural network implementation in fpga using layer mul-
tiplexing for effective resource utilization, IEEE Transactions
on Neural Networks 18(3) (May 2007), 880–888.

[14] G.E. Hinton, S. Osindero and Y.-W. Teh, A fast learning algo-
rithm for deep belief nets, Neural Comput 18(7) (July 2006),
1527–1554.

[15] L. Holmstrom and P. Koistinen, Using additive noise in back-
propagation training, Neural Networks, IEEE Transactions on
3(1) (Jan 1992), 24–38.

[16] R. Hundt, Loop recognition in c++/java/go/scala, in: Proceed-
ings of Scala Days 2011, (2011).

[17] F. Iandola, K. Ashraf, M. Moskewicz and K. Keutzer, Fire-
caffe: Near-linear acceleration of deep neural network train-
ing on compute clusters, in: Proceeedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR).

[18] S. Kilts, Advanced FPGA Design: Architecture, Implementa-
tion, and Optimization, Wiley-IEEE Press, 2007.

[19] L.-W. Kim, S. Asaad and R. Linsker, A fully pipelined fpga
architecture of a factored restricted boltzmann machine artifi-
cial neural network, ACM Trans Reconfigurable Technol Syst
7(1) (Feb 2014), 5–23.

[20] Q.N. Le and J.-W. Jeon, Neural-network-based low-speed-
damping controller for stepper motor with an fpga, IEEE
Transactions on Industrial Electronics 57(9) (Sept 2010),
3167–3180.

[21] D. LeLy and P. Chow, High-performance reconfigurable hard-
ware architecture for restricted boltzmann machines, IEEE
Transactions on Neural Networks 21(11) (Nov 2010), 1780–
1792.

[22] Y. LeCun, Y. Bengio and G. Hinton, Deep learning, Nature
521(7553) (May 2015), 436–444.

[23] J. Li, K. Ouazzane, H. Kazemian and M. Afzal, Neural net-
work approaches for noisy language modeling, Neural Net-
works and Learning Systems, IEEE Transactions on 24(11)
(Nov 2013), 1773–1784.

[24] W. Mansour, R. Ayoubi, H. Ziade, R. Velazco and W.E.
Falouh, An optimal implementation on fpga of a hopfield
neural network, Advances in Artificial Neural Systems 2011
(2011), 1–9.

[25] K. Mehrotra, C.K. Mohan and S. Ranka, Elements of Artificial
Neural Networks, MIT Press, Cambridge, MA, USA, 1997.

[26] A. Murray and P. Edwards, Synaptic weight noise during mul-
tilayer perceptron training: Fault tolerance and training im-
provements, Neural Networks, IEEE Transactions on 4(4) (Jul
1993), 722–725.

[27] J. Nazari and O.K. Ersoy, Implementation of back-
propagation neural networks with matlab, Technical report,
Purdue University School of Electrical Engineering (01
1992).

[28] U. of California Irvine, Machine learning repository, http://
archive.ics.uci.edu/ml/.

[29] A. Omondi and J. Rajapakse, FPGA Implementations of Neu-
ral Networks, Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[30] T. Orlowska-Kowalska and M. Kaminski, Fpga implementa-
tion of the multilayer neural network for the speed estimation
of the two-mass drive system, IEEE Transactions on Indus-

F. Ortega-Zamorano et al. / Layer multiplexing FPGA implementation for deep back-propagation learning 185

trial Informatics 7(3) (Aug 2011), 436–445.
[31] F. Ortega-Zamorano, J.M. Jerez, D. Urda Muñoz, R.M.

Luque-Baena and L. Franco, Efficient implementation of
the backpropagation algorithm in fpgas and microcontrollers,
IEEE Transactions on Neural Networks and Learning Systems
27(9) (2016), 1840–1850.

[32] F. Ortega-Zamorano, J.M Jerez and L. Franco, Fpga imple-
mentation of the c-mantec neural network constructive al-
gorithm, IEEE Transactions on Industrial Informatics 10(2)
(May 2014), 1154–1161.

[33] F. Ortega-Zamorano, J.M Jerez, G. Juarez and L. Franco, Fpga
implementation comparison between c-mantec and back-
propagation neural network algorithms, in: Advances in Com-
putational Intelligence, volume 9095, Springer International
Publishing, (2015), 197–208.

[34] F. Ortega-Zamorano, J.M Jerez, G. Juarez, J.O Pérez and L.
Franco, High precision fpga implementation of neural net-
work activation functions, in: Intelligent Embedded Systems
(IES), 2014 IEEE Symposium on, (Dec 2014), 55–60.

[35] T. Pinto, Z. Vale, T.M. Sousa, I. Praça, G. Santos and H.
Morais, Adaptive learning in agents behaviour: A framework
for electricity markets simulation, Integr Comput-Aided Eng
21(4) (Oct 2014), 399–415.

[36] R.D. Reed and R.J. Marks, Neural Smithing: Supervised
Learning in Feedforward Artificial Neural Networks, MIT
Press, Cambridge, MA, USA, 1998.

[37] M. Rizzi, M. D’Aloia and B. Castagnolo, A super-
vised method for microcalcification cluster diagnosis, Integr
Comput-Aided Eng 20(2) (Apr 2013), 157–167.

[38] D. Rumelhart, G. Hinton and R. Williams, Learning represen-
tations by back-propagating errors, Nature 323(6088) (1986),
533–536.

[39] A. Savich, M. Moussa and S. Areibi, The impact of arithmetic
representation on implementing mlp-bp on fpgas: A study,
IEEE Transactions on Neural Networks 18(1) (Jan 2007),
240–252.

[40] J. Schmidhuber, Deep learning in neural networks: An
overview, Neural Networks 61 (2015), 85–117.

[41] J. Shawash and D. Selviah, Real-time nonlinear parameter
estimation using the levenberg-marquardt algorithm on field
programmable gate arrays, IEEE Transactions on Industrial
Electronics 60(1) (Jan 2013), 170–176.

[42] S. Shrestha, Z. Bochenek and C. Smith, Artificial neural net-
work (ann) beyond cots remote sensing packages: Imple-
mentation of extreme learning machine (elm) in matlab, in:
Geoscience and Remote Sensing Symposium (IGARSS), 2012
IEEE International, (July 2012), 6301–6304.

[43] S. Sun, Z. Yan and J. Zambreno, Demonstrable differential
power analysis attacks on real-world fpga-based embedded
systems, Integr Comput-Aided Eng 16(2) (Apr 2009), 119–
130.

[44] N. Sundararajan and P. Saratchandran, Parallel Architectures
for Artificial Neural Networks: Paradigms and Implementa-
tions, 1st edition, IEEE Computer Society Press, Los Alami-
tos, CA, USA, 1998.

[45] H. Wen, W. Xie and J. Pei, A pre-radical basis function with
deep back propagation neural network research, in: Signal
Processing (ICSP), 2014 12th International Conference on,
(Oct 2014), 1489–1494.

[46] P.J. Werbos, Beyond regression: New tools for prediction and
analysis in the behavioral sciences, Ph.D. thesis, Harvard Uni-
versity, 1974.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

