Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/114447
Campo DC Valoridioma
dc.contributor.authorGolpour, Imanen_US
dc.contributor.authorFerrao, Ana Cristinaen_US
dc.contributor.authorGoncalves, Fernandoen_US
dc.contributor.authorCorreia, Paula M. R.en_US
dc.contributor.authorBlanco-Marigorta, A. Men_US
dc.contributor.authorGuine, Raquel P. F.en_US
dc.date.accessioned2022-04-27T12:49:31Z-
dc.date.available2022-04-27T12:49:31Z-
dc.date.issued2021en_US
dc.identifier.issn2304-8158en_US
dc.identifier.urihttp://hdl.handle.net/10553/114447-
dc.description.abstractThis research study focuses on the evaluation of the total phenolic compounds (TPC) and antioxidant activity (AOA) of strawberries according to different experimental extraction conditions by applying the Artificial Neural Networks (ANNs) technique. The experimental data were applied to train ANNs using feed-and cascade-forward backpropagation models with Levenberg-Marquardt (LM) and Bayesian Regulation (BR) algorithms. Three independent variables (solvent concentration, volume/mass ratio and extraction time) were used as ANN inputs, whereas the three variables of total phenolic compounds, DPPH and ABTS antioxidant activities were considered as ANN outputs. The results demonstrate that the best cascade-and feed-forward backpropagation topologies of ANNs for the prediction of total phenolic compounds and DPPH and ABTS antioxidant activity factors were the 3-9-1, 3-4-4-1 and 3-13-10-1 structures, with the training algorithms of trainlm, trainbr, trainlm and threshold functions of tansig-purelin, tansig-tansig-tansig and purelin-tansig-tansig, respectively. The best R2 values for the predication of total phenolic compounds and DPPH and ABTS antioxidant activity factors were 0.9806 (MSE = 0.0047), 0.9651 (MSE = 0.0035) and 0.9756 (MSE = 0.00286), respectively. According to the comparison of ANNs, the results showed that the cascade-forward backpropagation network showed better performance than the feed-forward backpropagation network for predicting the TPC, and the FFBP network, in predicting the DPPH and ABTS antioxidant activity factors, had more precision than the cascade-forward backpropagation network. The ANN technique is a potential method for estimating targeted total phenolic compounds and the antioxidant activity of strawberries.en_US
dc.languageengen_US
dc.relationUIDB/00681/2020en_US
dc.relationCI&DETS/2015/0004en_US
dc.relationUIDB/00681/2020en_US
dc.relation.ispartofFoodsen_US
dc.sourceFoods [ISSN 2304-8158], v. 10 (9), 2228en_US
dc.subject3303 ingeniería y tecnología químicasen_US
dc.subject3206 Ciencias de la nutriciónen_US
dc.subject.otherStrawberryen_US
dc.subject.otherTotal phenolic compoundsen_US
dc.subject.otherAntioxidant activityen_US
dc.subject.otherArtificial neural networks (ANNs)en_US
dc.titleExtraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs)en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/foods10092228en_US
dc.identifier.scopus2-s2.0-85115660008-
dc.identifier.isiWOS:000699832200001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue9-
dc.relation.volume10(9)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Extraction, Characterization and Biological Activity of Food Bioactive Compoundsen_US
dc.identifier.external100226398-
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,726
dc.description.jcr5,561
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,5
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería de Procesos-
crisitem.author.orcid0000-0003-4635-7235-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameBlanco Marigorta, Ana María-
Colección:Artículos
Adobe PDF (1,89 MB)
Vista resumida

Citas SCOPUSTM   

11
actualizado el 09-feb-2025

Citas de WEB OF SCIENCETM
Citations

6
actualizado el 02-feb-2025

Visitas

100
actualizado el 21-dic-2024

Descargas

36
actualizado el 21-dic-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.