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Abstract: This research study focuses on the evaluation of the total phenolic compounds (TPC) and
antioxidant activity (AOA) of strawberries according to different experimental extraction conditions
by applying the Artificial Neural Networks (ANNs) technique. The experimental data were applied
to train ANNs using feed- and cascade-forward backpropagation models with Levenberg-Marquardt
(LM) and Bayesian Regulation (BR) algorithms. Three independent variables (solvent concentration,
volume/mass ratio and extraction time) were used as ANN inputs, whereas the three variables of
total phenolic compounds, DPPH and ABTS antioxidant activities were considered as ANN outputs.
The results demonstrate that the best cascade- and feed-forward backpropagation topologies of
ANNs for the prediction of total phenolic compounds and DPPH and ABTS antioxidant activity
factors were the 3-9-1, 3-4-4-1 and 3-13-10-1 structures, with the training algorithms of trainlm, trainbr,
trainlm and threshold functions of tansig-purelin, tansig-tansig-tansig and purelin-tansig-tansig,
respectively. The best R2 values for the predication of total phenolic compounds and DPPH and
ABTS antioxidant activity factors were 0.9806 (MSE = 0.0047), 0.9651 (MSE = 0.0035) and 0.9756
(MSE = 0.00286), respectively. According to the comparison of ANNs, the results showed that
the cascade-forward backpropagation network showed better performance than the feed-forward
backpropagation network for predicting the TPC, and the FFBP network, in predicting the DPPH and
ABTS antioxidant activity factors, had more precision than the cascade-forward backpropagation
network. The ANN technique is a potential method for estimating targeted total phenolic compounds
and the antioxidant activity of strawberries.

Keywords: strawberry; total phenolic compounds; antioxidant activity; artificial neural networks
(ANNs)

1. Introduction

Strawberries (Fragaria ananassa), a member of the Rosaceae family, are one of the signifi-
cant sources of phenolic compounds, along with antioxidant and antiproliferative activities
of fruits. They are widely consumed due to their nutritional content and flavour [1,2]. It has
been reported that the antioxidant properties of strawberries are due to their high content of
total phenolic compounds rather than vitamin C [2]. The total phenolic compounds available
in strawberries have an impact on their quality, contributing to organoleptic and sensorial
properties and also to health properties [3]. Strawberries, because of these different health
advantages in addition to their nutritional value, have seen increasing worldwide production
and consumption and are thus known as the first most significant soft fruit species [4]. Useful
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polyphenols such as hydrolysable (ellagitannins and gallotannins), flavonols, anthocyanins
and condensed tannins are present in strawberry fruits [5,6].

Strawberries, due to their high antioxidant levels and the beneficial impacts on human
health, prevent several chronic pathologies, like cancer, obesity, cardiovascular diseases,
inflammation-related pathologies and Alzheimer’s disease [7–9]. Research works showed
that phenolic compounds have been replacing synthetic antioxidants and antimicrobial
agents in food crops because of their prominent antimicrobial activities, which could be
utilized in the process of functional food formulations as well as pharmaceuticals for
health-promoting impacts [10].

In food industries, the extraction process is one of the crucial steps in recovering
phenolic compounds [11]. It should be noted that this process can be carried out using sev-
eral methods to extract the phenolic compounds. In addition, ideal extraction techniques
depend on the kind of food product under analysis [12]. Some of the techniques that can
be applied to extract phenolics include infusion, percolation, digestion, decoction, macera-
tion, Soxhlet extraction, aqueous alcoholic extraction by phytonics processes, ultrasound
extraction, fermentation, supercritical fluid extraction and countercurrent extraction [3].
Among these techniques, solid–liquid extraction has been extensively utilized to separate
various compounds during the recovery of antioxidant phenolic compounds; the efficiency
of the extraction process can be affected by parameters like the solvent/solid ratio, the
extraction time, the type and the concentration of the solvent, and temperature [13]. Naczk
and Shahidi [14] demonstrated that extraction times longer that 24 h could increase the
oxidation process of phenolic compounds.

One of the important opportunities for researchers, faced with time-consuming and
costly methodologies, to acquire reputable information for various operating conditions
involves new products and processes obtained through developing the science of soft com-
puting. Artificial intelligence systems (AISs) like artificial neural networks (ANNs) could
be a powerful tool to predict nonlinear system data for overcoming these concerns [15].
ANN as an intelligent alternative approach for solving engineering problems has been
used to adjust multi-variable nonlinear functions [16,17]. The ANN modelling method has
been used to predict food properties and model many processes in food industries, such as
the antioxidant activity of bananas [18], tea [19], essential oils [20] and beetroot [21]. In all
these cases, the antioxidant properties have been modelled with good accuracy through
the application of ANN modelling. On the other hand, Gutés et al. [22] used ANN analysis
for determining different phenols using an electronic tongue, which combines biosensor
measurements with chemometric tools.

Estimating the value of extractable total phenolic compounds (TPC) and the antioxi-
dant activity (AOA) of strawberries is extremely advantageous, not only for the consump-
tion of fruits and their derivatives but also for possible industrial uses. In this case it
necessarily requires knowledge of the related phenolic profiles and traits of the samples,
which will help to determine the most appropriate sample for industrial scale extraction
aimed at increasing the amount of compounds with antioxidant activity. Although ANN
modelling has been applied in the extraction prediction of fruits, to the authors’ knowledge,
there has been no p previous evaluation of the total phenolic compounds and antioxidant
activity of strawberries using artificial neural networks (ANNs). Thus, the aim of this
research is to model the effect of different experimental extraction conditions, such as time,
volume/mass ratio and extracting solution, using artificial neural networks (ANNs) on
the TPC and AOA, using two methodologies to evaluate the latter (ABTS and DPPH).
Our work intends to optimize the extraction method based on the above-mentioned input
variables, using the strawberry as our sample matrix. Our aim is to predict maximum TPC
and AOA under the best operating conditions, for example, minimum use of ethanol and
increased use of water.
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2. Materials and Methods
2.1. Sample Preparation and Extraction Methodology

The strawberry samples used in the present work were acquired at a local market and
transported to the laboratory, where they were peeled and ground for obtaining a uniform
mass. A 5 g sample was taken from the ground strawberry mass and then used to extract
the phenolic compounds. The extraction procedure consisted of several assays, and for
each three extraction steps were performed successively on the same sample. For each
assay, different conditions were used, namely different extraction times (from 20 to 60 min),
different solvent concentrations (aqueous solutions of methanol, varying from 40 to 100%)
and different solvent volume to sample mass ratios (varying from 6 to 12 mL/g).

For experimental planning of the assays, a 2**(3) central composite design (nc = 8,
ns = 6, nc0 = 2, ns0 = 1) was used, and consequently 18 experimental runs were performed.

The extracts obtained were used to quantify the phenolic composition and the antioxi-
dant activity.

2.2. Chemical Analyses

The content of TPC in the extracts was determined by the Folin-Ciocalteu reagent,
by adaptation of the method by Gonçalves et al. [23] and Guiné et al. [24]. A total of
0.125 mL of each sample was added to 0.75 mL of deionized water and 0.125 mL of the
Folin-Ciocalteu reagent. Then, the solution was left to stand for 6 min; after this, 2 mL
of a 5% (m/v) solution of sodium carbonate was added, and the mixture was left to rest
again for 90 min at room temperature in the dark. A calibration curve was obtained with
standard solutions of gallic acid, and the absorbance was measured in a spectrophotometer
at 760 nm. The results were expressed as milligrams of gallic acid equivalent (GAE) per
gram of fresh sample, being a mean of three measurements.

The AOA was determined using two assays: the free radical 2,2′-azino-bis
(3-ethylbenzthiazoline-6-sulphonic acid (ABTS)) and the free radical 2,2-Diphenyl-
1-picrylhydrazyl (DPPH). The results were based on the percentage of inhibition, compared
to a standard antioxidant (Trolox) in a dose–response curve, being expressed in µmol of
Trolox equivalent (TE) per gram of fresh sample.

The ABTS method is based on the abilities of different substances to scavenge the
ABTS+ radical compared with a standard antioxidant (Trolox: 6-hydroxy-2,5,7,
8-tetramethylchroman-2-carboxylic acid). For the assay, ABTS+ radical was prepared
by mixing an ABTS+ stock solution (7 mM in water) with 2.45 mM potassium persulfate.
This mixture was allowed to stand for 12–16 h at room temperature in the dark until it
reached a stable oxidative state. The ABTS+ solution (1 mL) was diluted in 80 mL of ethanol
or buffer solution prior to utilization. In a tube was placed 2 mL of ABTS+ solution with
0.1 mL of sample, and after agitation it was left to rest in the dark for 15 min [24,25]. Then,
the absorbance was measured at 734 nm to assess the percentage of inhibition, using a
calibration curve previously obtained.

In the DPPH method, 100 µL of sample and 2 mL of DPPH previously prepared with
methanol were added to a tube, which was placed in the dark at room temperature for
30 min. After that, the absorbance was measured in a spectrophotometer at 515 nm. The
results were calculated from the percentage of inhibition of each sample as compared to
Trolox as the standard antioxidant in a dose–response curve [24,26,27].

The analyses for antioxidant activity were performed in triplicate for each of the
extracts analysed.

2.3. ANN Based Modelling

A multilayer perceptron (MLP), with two models of feed-forward backpropagation
(FFBP) and cascade-forward backpropagation (CFBP) in the ANN model generated by
the toolbox of Neural Network (NN) used in MATLAB software R2018b were created
and tested with one and two hidden layers under architectures of 3–x–1 and 3–x–y–1 and
different neurons to estimate the outputs. The input and output neurons of the networks
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with developed topology with two hidden layers are illustrated in Figure 1. The input
parameters of the ANNs consisted of the levels of time, volume/mass ratio and solvent,
while the output variables for prediction were the values of the TPC, AOA (DPPH) and
AO (ABTS) of strawberries. Table 1 shows the boundaries and levels for the three inputs
and three outputs applied.

Figure 1. Proposed architecture of MLP ANN.

Table 1. Characteristics of identified variables in input and output layers used in the model of ANNs.

Input Variables to the ANNs (Units) Range Output Variables for the ANNs (Units) Range

Time (min) 20–60 Total phenolic compounds (TPC) (mg GAE/g) 1.066–1.550
Volume/Mass ratio (mL/g) 6–12 Antioxidant activity (AOA-DPPH) (mg TE/g) 0.904–1.656

Solvent (%) 40–100 Antioxidant activity (AOA-ABTS) (mg TE/g) 1.446–4.352

Moreover, several topologies were evaluated by application of the raising method
for changing the available neurons of ANNs. The training process of ANNs was done
based on Levenberg-Marquardt (LM) (trainlm code) and Bayesian regulation (BR) (trainbr
code) algorithms for updating network weights. The evaluation process of ANNs for each
output parameter was done individually for facilitating the training process of the neural
networks (NNs) and analysis of the obtained results. The transfer functions used to obtain
the best network structure were linear function (PUR), logarithmic sigmoid (LOG) and
hyperbolic tangent sigmoid (TAN), according to the following equations [15]:

Yj = Xi (purelin) (1)

Yj =
2(

1 + exp
(
−2Xj

))
− 1

(Tansig) (2)

Yj =
1

1 + exp−Xj
(Logsig) (3)

where Xj is computed as follows:

Xj =
m

∑
i=1

Wij ×Yi + bj (4)
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where m is the number of neurons in output layer, Wij is the corresponding weight between
ith and jth layers, Yi is the ith output neuron, Xj is the jth input neuron and bj is the bias of
the jth neuron for the related networks.

With the goal to estimate the antioxidant activity of foods based on phenolic contents
using the ANN technique, the ANN-based model was created. The total set of sample data
was divided into two subsets to train ANN and test the estimation capability. In order to
train the subset, 70% of samples were randomly selected, while the testing subset had 30%
of the samples. The details of the ANN model are shown in Table 2.

Table 2. Details of the ANN models.

No Particulars Specifications

1 Network type Feed-Forward Backpropagation (FFBP)
Cascade-Forward Backpropagation (CFBP)

2 Training function or Training algorithm Levenberg-Marquardt (LM) backpropagation (TRAINLM)
Bayesian regulation (BR) backpropagation (TRAINBR)

3 Adaption learning function Gradient Descent with Momentum Weight and Bias (LEARNGDM)

4 Performance function Mean Square Error (MSE)

5 Transfer functions
Hyperbolic Tangent Sigmoid (TANSIG)

Logarithmic sigmoid (LOGSIG)
Linear (PURELIN)

6 Data division Random (Dividerand)

7 Number of input layer units 3

8 Number of output layer units 1

9 Number of hidden layers 1 and 2

10 Number of hidden layer neurons Iterative

11 Number of epochs (Learning cycle) 1000 iterations for Levenberg-Marquardt (LM); 2000 iterations for
Bayesian regulation (BR)

2.4. Data Normalization and Error Evaluation

For improving the capability and performance of the ANN model in recognizing
relations among related inputs and outputs, guaranteeing the convergence and process
stability, data normalization was done in the first step in the ANN modelling to forecast
the outputs with respect to the following equation [15,28]:

Xnorm =
Xr − Xmin

Xmax − Xmin
(5)

where Xr and Xnorm, represent the values of measured and normalized data, respectively, and
Xmin and Xmax are the minimum and maximum values of the measured factors, respectively.

The best network performance was statistically gained by the mean square error (MSE)
and the determination coefficient (R2), which were obtained using following formulas [3,29,30]:

MSE =
1
n

n

∑
k=1

(Sk − Tk)
2 (6)

R2 = 1−

n
∑

k=1
[Sk − Tk]

n
∑

k=1

Sk −

n
∑

k=1
Sk

n

 (7)
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where Sk is the predicted output values of the network for the kth dataset, Tk is the target
output for the kth dataset and n is the number of specific training patterns.

3. Results and Discussion
3.1. Experimental Results

Table 3 presents the results obtained for the studied properties, total phenolic com-
pounds and antioxidant activity (DPPH and ABTS methods), considering variable experi-
mental conditions: time varying from 40 to 60 min, volume of extracting solution to mass
ratio (V/M) varying from 9 to 12 mL/g and concentration of the solvent varying from
40% water (60% ethanol) to 100% water (0% ethanol). Although more combinations were
performed for the ANN modelling, 18 combinations to be precise, the seven presented in
Table 3 are the most representative for a general overview of the problem at a macroscopic
scale, which allow a better visualization of the effect of the different conditions on the
measured properties of the extracts. The run for central point conditions (40 min extraction
time, 9 mL/L volume/mass ratio and 70:30% water: ethanol in extracting solution) was
repeated several times according to the experimental design technique. For each of the
runs, a total of three measurements were made for each property, and the values presented
result from the calculation of the average and standard deviation of those measurements.
The results in Table 3 indicate that the highest TPC concentration (1.494 mg GAE/g) was
obtained for extraction with a solution of 70% water to 30% ethanol, for a V/M ratio of
12 mL/g and a 40 min extraction time. However, the value obtained for the same conditions
but extracting with 100% water was very similar (1.457 mg GAE/g). Bearing this in mind,
it would be preferable to choose the latter option of not using any organic solvents, i.e.,
perform the extraction only with water. When looking at the antioxidant activity, the results
obtained with the two methods were quite different, which is derived from the chemical
nature of the substances and the reactions involved. While for the experiments made with
the DPPH methods the results are very similar for all tested conditions, the results for
ABTS are quite dependent on the variability of the processing parameters. In this way
the highest value of AOA for the DPPH method (1.297 mg TE/g) was obtained for the
40 min extraction time, with V/M equal to 9 mL/g and a 70% concentration of solvent;
again, the difference when using 100% water was minimal (1.271 mg TE/g), thus showing
a very similar trend to that of the TPC. With regard to the ABTS AOA, the highest value
(3.368 mg TE/g) was obtained for only the 20 min extraction, with a V/M ratio of 9 mL/g
and a solution with 70% water and 30% ethanol. In this case, the possibility of using 100%
water as the extracting solution was not viable (1.686 mg TE/g of ABTS AOA) (Table 3).
Conventional extraction of bioactive substances such as phenolic compounds or other
compounds with antioxidant activity is frequently performed using organic solvents like
ethanol, methanol or acetone. However, the extractions are usually executed in a batch
process, requiring several steps aimed at separating the extracted components from the
solvents used in order to recover the solvents. Still, this process will eventually result in
extracts with residual amounts of solvent, which could sometimes limit their applicability.
Moreover, these solvents can be responsible for high quantities of waste, which in most
cases are potentially harmful to the environment. Therefore, for industrial applications, the
use of clean solvents such as water is highly beneficial on one hand because it is cheaper
and more accessible and on the other hand because it is cleaner and more environmentally
friendly [31,32].

3.2. ANN Modelling for Prediction of TPC

The development of a neural network (NN) to predict the TPC was first done with a
small network architecture, including one hidden layer, and demonstrated good results. For
avoiding overfitting in ANNs, the number of related neurons for the hidden layer is raised
during each session of the training process to obtain the best performance [33]. According
to the obtained results, the best network structure was selected as a one-layer cascade-
forward (CF) neural network type, with a topology of 3-9-1 (Figure 2). The performance of
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the chosen models is illustrated in Table 4, with different hidden layers and neurons. The
results show that the determination coefficients (R2) are greater than 0.95 and the Mean
Squared Errors (MSEs) are very low for the prediction of TPC. Accordingly, the models are
generally very trustworthy for the dataset. As shown in Table 4, the CFBP network with a
topology of 3-9-1 is the most suitable, with a threshold function of Tansig relevant to the
hidden layer and Purelin for output layer, with determination coefficient and mean square
error values of R2 = 0.9806 and MSE = 0.00470, respectively. The results demonstrate that
using the threshold function of Purelin in the output layer and the Tansig function in the
hidden layer had better performance, reducing the ANN error function in the prediction
of TPC.

Table 3. Experimental results for TPC and AOA (DPPH and ABTS) considering different extracting conditions (values
expressed as mean ± standard deviation).

Time (min) Volume/Mass
Ratio (mL/g) Conc. Solvent (%) TPC (mg GAE/g) AOA-DPPH

(mg TE/g)
AOA-ABTS
(mg TE/g)

40.0 9.0 70.0 1.318 ± 0.105 1.182 ± 0.161 2.858 ± 0.719
20.0 9.0 70.0 1.240 ± 0.029 1.188 ± 0.070 3.368 ± 0.042
60.0 9.0 70.0 1.293 ± 0.039 1.251 ± 0.009 2.070 ± 0.041
40.0 6.0 70.0 1.457 ± 0.036 1.297 ± 0.071 2.401 ± 0.004
40.0 12.0 70.0 1.494 ± 0.072 1.201 ± 0.072 3.036 ± 0.129
40.0 9.0 40.0 1.146 ± 0.068 1.187 ± 0.084 2.277 ± 0.174
40.0 9.0 100.0 1.446 ± 0.021 1.271 ± 0.029 1.686 ± 0.156

Figure 2. Best network topologies with the Levenberg-Marquardt training algorithm for prediction
of total phenolic compounds (TPC).

Table 4. Best topologies included in training algorithms, various layers and neurons for estimation of total phenolic
compounds (TPC).

Network Training Algorithm Threshold Function Topology Epoch R2 MSE

CFBP LM Tansig-Purelin 3-9-1 11 0.9806 0.00470
Purelin-Tansig-Purelin 3-6-3-1 15 0.9709 0.00620

Tansig-Tansig 3-11-1 10 0.9783 0.00900
BR Purelin-Purelin-Tansig 3-5-5-1 5 0.9691 0.02490

Purelin-Purelin 3-10-1 22 0.9599 0.03170
FFBP LM Logsig-Logsig-Tansig 3-20-5-1 35 0.9755 0.00510

Tansig-Tansig-Tansig 3-10-8-1 44 0.9730 0.00980
BR Purelin-Purelin 3-15-1 12 0.9655 0.02780

Overall, a high correlation was found between the estimated results and targets; the
mean accuracy of R2 = 0.9806 demonstrates that the developed network is practicable and
efficient for prediction of the TPC (Figure 3). Figure 3 shows the estimated values of TPC,
with the desired output values by application of the optimal ANN and the experimental
values, and shows that the data points are placed around a 45◦ straight line, indicating
the suitability of the selected multilayer feed-forward ANNs for the prediction of TPC.
Accordingly, it can be seen that the TPC predicted using the optimal topology of the
ANN were very close to those of experimental data. The quality and pre-processing of
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the training data, magnitude, type and structure of the ANN and the learning algorithm
for that specific case can help to solve important problems through the application of
ANN modelling [34]. Accordingly, the results showed that the backpropagation algorithm
applied in this research achieved the best fit to the training data due to its available capacity
of indicating non-linear functional relationships among considered inputs and targets [35].
It should be also noted that using a high number of hidden neurons for the best structure
(3-9-1) obtained to predict TPC with the related threshold functions may cause overlearning
of the ANN [35]. According to the high determination accuracy of the predicted dataset in
the network processes, it can be concluded that the considered neural networks are capable
of predicting the TPC of the strawberries. It should be mentioned that Guiné et al. [18],
who studied the prediction of the phenolic contents and antioxidant activity of bananas
according to four input parameters (variety, dryness state, type and order of extract)
found determination coefficients between antioxidant activity and phenolic contents from
0.5833 to 0.6819, which were lower than the determination coefficients obtained for this
research study.

Figure 3. Predicted TPC values of strawberries using artificial neural networks (ANNs) versus
experimental values for testing dataset.

3.3. ANN Modelling for Prediction of AOA (DPPH)

Table 5 shows the performance parameters of the ANN models with suitable structures
and threshold functions for predicting the AOA (DPPH). The determination coefficients
between the experimental and predicted outputs are generally higher than 0.95, without
any sign of overfitting during the ANN training for the all obtained structures (Table 5).

Table 5. Best topologies included in training algorithms, various layers and neurons for estimation of AOA (DPPH).

Network Training Algorithm Threshold Function Topology Epoch R2 MSE

FFBP LM Purelin-Purelin 3-7-1 9 0.9601 0.00910
Purelin-Tansig-Purelin 3-15-9-1 15 0.9595 0.09500

BR Tansig-Tansig-Tansig 3-4-4-1 25 0.9756 0.00350
Purelin-Tansig-Tansig 3-10-10-1 44 0.9734 0.00440
Logsig-Tansig-Purelin 3-10-8-1 13 0.9695 0.00610

Tansig-Purelin 3-3-1 4 0.9633 0.00830
CFBP LM Tansig-Tansig-Tansig 3-12-6-1 18 0.9520 0.09900

BR Purelin-Purelin-Purelin 3-7-3-1 27 0.9525 0.09400

Figure 4 shows that FFBP with two hidden layers was the best ANN for prediction of
AOA (DPPH). Moreover, based on the reported accuracies in Table 5, it can be concluded
that the use of the Tansig threshold function used in the output layer provides the best
rational choice to model non-linearities over all experiments in the prediction of the AOA
(DPPH). Moreover, Purelin had good performance as a threshold function in the output
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layer of other ANN structures in predicting the AOA (DPPH). However, the best neural
network models create the best correlations between predicted values by the ANN and the
experimental values obtained in the laboratory. Therefore, there is an acceptable confidence
in the analysis, considering the performance of the related models of ANNs. Overall, the
best results obtained for predicting the AOA (DPPH) belonged to the FFBP network and
3-4-4-1topology, 25 epochs, and the Tansig-Tansig-Tansig threshold function with the LM
training algorithm as the primary strategy. This structure resulted in MSE = 0.00350 and
R2 = 0.9756, which shows that the selected ANN had good performance in predicting the
AOA (DPPH).

Figure 4. Best network topologies with the Bayesian regulation training algorithm for prediction of antioxidant activity
(DPPH).

With respect to the obtained results, the Bayesian regularization backpropagation
algorithm (BR) utilized in the training sessions offers elimination or reduction of the
exhaustive cross-validation and is more powerful than Levenberg-Marquardt (LM) as a
regular backpropagation algorithm [36]. Overall, the Bayesian performance is also better
than the early stopping method in the effort to obtain network generalization, especially for
a small dataset [37]. The results illustrate that the ANN modelling can be applied effectively
to predict AOA (DPPH), based on the considered input dataset and identified structures.

Hosu et al. [38] predicted the antioxidant activity of Romanian red wines using data
on total phenolics, flavonoids, anthocyanins and tannins and found related relative errors
between the predicted and actual data of the antioxidant activities of the wines of less than
3%. The predicted values as compared to the real experimental values for AOA (DPPH)
are shown in Figure 5, which confirms that the developed FFBP network is efficient and
feasible and has a good performance, with suitable testing accuracy (0.9756) for prediction
of AOA (DPPH). It can be shown that the predicted values of AOA (DPPH), determined
using the optimal topology of ANNs, are close to those of the empirical data.

Figure 5. Predicted AOA (DPPH) values of strawberries using artificial neural networks versus
experimental values for testing dataset.
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3.4. ANN Modelling for Prediction of AOA (ABTS)

To create the ANN-based model, the data were divided into two subsets: training
and testing. The estimated and experimental datasets for the training samples were
compared, and the results obtained to test the performance of the developed ANN models
are presented in Table 6. Furthermore, the impact of the hidden layer number and neuron
number for each hidden layer on the accuracy of the prediction can be seen from the data
in Table 6.

Table 6. Best topologies included in training algorithms, various layers and neurons for estimation of AOA (ABTS).

Network Training Algorithm Threshold Function Topology Epoch R2 MSE

FFBP LM Purelin-Tansig-Tansing 3-13-10-1 32 0.9651 0.00286
Tansig-Tansig 3-8-1 18 0.9622 0.00260

Tansig-Purelin -Purelin 3-5-3-1 9 0.9512 0.00415
BR Logsig-Purelin-Tansig 3-8-8-1 22 0.9601 0.00370

Tansig-Purelin-Tansig 3-3-3-1 14 0.9555 0.00500
Purelin-Tansig 3-6-1 3 0.9423 0.01500

CFBP LM Tansig-Tansig-Tansig 3-20-5-1 20 0.9600 0.00420
BR Purelin-Purelin-Purelin 3-8-5-1 5 0.9615 0.00335

As shown in Figure 6, the best ANN topology and parameters were selected as 3-13-
10-1 for predicting the AOA (ABTS). Table 6 illustrates the high capability of the ANNs
to produce outputs similar to the experimental data. The determination coefficient (R2)
values obtained were greater than 0.94 for the test dataset, whereas the values of MSE were
very low. The results obtained indicate that the developed network could be utilized for
subsequent analysis due to the acceptable performance. The results demonstrated good
correlation between the predicted and experimental values for the network subsets; the
best determination coefficient for prediction of AOA (ABTS) was found to be R2 = 0.9651
for the FFBP network, with a topology of 3–13-10-1, MSE = 0.00286, Purelin-Tansig-Tansig,
and an LM training algorithm at 32 training epochs.

Figure 6. Best network topologies with Levenberg-Marquardt training algorithm for prediction of antioxidant activity
(ABTS).

Figure 7 shows the relation between the predicted values by ANNs and the experi-
mental values for the AOA (ABTS). With respect to the obtained results for this study, the
maximum value of R2 was 0.9651 for the prediction of AOA (ABTS). Thus, neural networks
(NNs) are potent tools for AOA (ABTS) modelling in different conditions, being extremely
accurate and taking little time to obtain results. Cimpoiui et al. [19] used ANN modelling
to predict the antioxidant activity of tea samples, with a relative error less than 0.5% based
on methyl-xanthine, catechin and flavonoid content, revealing the good predictive ability
of ANNs. The antioxidant activity and content of total phenolic compounds obtained in
this work differed from that study; however, acceptable results were obtained, making this
research successful in the case of strawberries.

This research study illustrated that ANN modelling can be applied to predict the
total phenolic compounds and antioxidant activities of samples, with good determination
coefficients.
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Figure 7. Predicted AOA (ABTS) values of strawberries using artificial neural networks versus
experimental values for the testing dataset.

4. Conclusions

This research study used ANN modelling techniques to estimate the antioxidant
activity and total phenolic contents of strawberry samples. The feed- and cascade-forward
ANN-based models were designed and trained by application of the backpropagation
algorithm. The results showed that the TPC, AOA (DPPH) and AOA (ABTS) of strawberries
could be predicted with a satisfactory accuracy of more than 0.94 for the training and testing
subsets of data, which is the acceptable value for the developed system to be applicable
in practice. Moreover, the training algorithm of Levenberg-Marquardt showed better
performance than Bayesian regulation in predicting the TPC and AOA (ABTS). It should
be mentioned that the CFBP model was able to predict TPC with an accuracy of 0.98,
which was the highest value among determination coefficients for all developed ANNs.
Overall, the findings of this research work demonstrate that the developed ANN models
are promising and powerful tools that can be used instead of the mathematical models for
the prediction of TPC and AOA.

In terms of practical application, these models are highly relevant, because the extrac-
tion of valuable bioactive compounds with antioxidant activity from biological matrices
requires expensive and time-consuming techniques and can involve the use of organic
solvents with a high environmental impact. In this way, these models can be used to predict
both the amount of phenolic compounds extractable from biological samples as well as
their antioxidant activity, as a function of the extraction conditions like extraction time, ratio
of volume of solution/mass of sample and concentration of the extracting solution. This
allows optimization of the process by maximizing the extraction of phenolic compounds
and also maximizing antioxidant activity, while minimizing the use of ethanol. In this way,
it is possible to choose optimal extractions without performing the actual set of time- and
resource-consuming experiments in the laboratory.

Finally, it is worth noting that the applications of the extracted phenolic compounds
are aimed at incorporation into food products to enhance their health-promoting properties,
such as antioxidant activity, and therefore it is desirable to minimize the use of ethanol for
applications in the health foods sector.
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