Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114205
DC FieldValueLanguage
dc.contributor.authorTamaddon, Maryamen_US
dc.contributor.authorBlunn, Gordonen_US
dc.contributor.authorTan, Rongweien_US
dc.contributor.authorYang, Panen_US
dc.contributor.authorSun, Xiaodanen_US
dc.contributor.authorChen, Shen Maoen_US
dc.contributor.authorLuo, Jiajunen_US
dc.contributor.authorLiu, Ziyuen_US
dc.contributor.authorWang, Lingen_US
dc.contributor.authorLi, Dichenen_US
dc.contributor.authorDonate González, Ricardoen_US
dc.contributor.authorMonzón Verona, Mario Domingoen_US
dc.contributor.authorLiu, Chaozongen_US
dc.date.accessioned2022-03-28T07:52:46Z-
dc.date.available2022-03-28T07:52:46Z-
dc.date.issued2022en_US
dc.identifier.issn2096-5524en_US
dc.identifier.otherScopus-
dc.identifier.urihttp://hdl.handle.net/10553/114205-
dc.description.abstractThe repair of osteochondral defects is one of the major clinical challenges in orthopaedics. Well-established osteochondral tissue engineering methods have shown promising results for the early treatment of small defects. However, less success has been achieved for the regeneration of large defects, which is mainly due to the mechanical environment of the joint and the heterogeneous nature of the tissue. In this study, we developed a multi-layered osteochondral scaffold to match the heterogeneous nature of osteochondral tissue by harnessing additive manufacturing technologies and combining the established art laser sintering and material extrusion techniques. The developed scaffold is based on a titanium and polylactic acid matrix-reinforced collagen “sandwich” composite system. The microstructure and mechanical properties of the scaffold were examined, and its safety and efficacy in the repair of large osteochondral defects were tested in an ovine condyle model. The 12-week in vivo evaluation period revealed extensive and significantly higher bone in-growth in the multi-layered scaffold compared with the collagen–HAp scaffold, and the achieved stable mechanical fixation provided strong support to the healing of the overlying cartilage, as demonstrated by hyaline-like cartilage formation. The histological examination showed that the regenerated cartilage in the multi-layer scaffold group was superior to that formed in the control group. Chondrogenic genes such as aggrecan and collagen-II were upregulated in the scaffold and were higher than those in the control group. The findings showed the safety and efficacy of the cell-free “translation-ready” osteochondral scaffold, which has the potential to be used in a one-step surgical procedure for the treatment of large osteochondral defects.en_US
dc.languageengen_US
dc.relationVersus Arthritis (No. 21160)en_US
dc.relationRosetree Trust (No. A1184)en_US
dc.relationBiomaterials and Additive Manufacturing: Osteochondral Scaffold innovation applied to osteoarthritisen_US
dc.relationInnovate UK via Newton Fund (No. 102872)en_US
dc.relationEngineering and Physical Science Research Council (No. EP/T517793/1)en_US
dc.relation.ispartofBio-design and manufacturingen_US
dc.sourceBio-Design and Manufacturing[ISSN 2096-5524], (Enero 2022)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherAdditive Manufacturingen_US
dc.subject.otherLarge Animalen_US
dc.subject.otherOsteochondral Scaffolden_US
dc.subject.otherPorous Titaniumen_US
dc.titleIn vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defectsen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s42242-021-00177-wen_US
dc.identifier.scopus85126293670-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-9854-4043-
dc.contributor.authorscopusid55581409800-
dc.contributor.authorscopusid7004735871-
dc.contributor.authorscopusid57487775700-
dc.contributor.authorscopusid57486960200-
dc.contributor.authorscopusid7405626037-
dc.contributor.authorscopusid57207571888-
dc.contributor.authorscopusid57208166343-
dc.contributor.authorscopusid57210418543-
dc.contributor.authorscopusid57034587600-
dc.contributor.authorscopusid35787219200-
dc.contributor.authorscopusid57201736831-
dc.contributor.authorscopusid7003371153-
dc.contributor.authorscopusid57188879979-
dc.identifier.eissn2522-8552-
dc.investigacionCiencias de la Saluden_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2022en_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,933
dc.description.jcr7,9
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.esciESCI
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.project.principalinvestigatorMonzón Verona, Mario Domingo-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptGIR Fabricación integrada y avanzada-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0002-4337-5991-
crisitem.author.orcid0000-0003-2736-7905-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameDonate González, Ricardo-
crisitem.author.fullNameMonzón Verona, Mario Domingo-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (2,44 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.