Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/114071
DC FieldValueLanguage
dc.contributor.authorPérez Almeida, María Normaen_US
dc.contributor.authorGonzález González, Aridaneen_US
dc.contributor.authorSantana Casiano, Juana Magdalenaen_US
dc.contributor.authorGonzález Dávila, Melchoren_US
dc.date.accessioned2022-03-16T12:26:13Z-
dc.date.available2022-03-16T12:26:13Z-
dc.date.issued2022en_US
dc.identifier.issn2296-7745en_US
dc.identifier.urihttp://hdl.handle.net/10553/114071-
dc.description.abstractOcean acidification impacts the iron (Fe) biogeochemistry both by its redox and its complexation reactions. This has a direct effect on the ecosystems due to Fe being an essential micronutrient. Polyphenols exudated by marine microorganisms can complex Fe(III), modifying the Fe(II) oxidation rates as well as promoting the reduction of Fe(III) to Fe(II) in seawater. The effect of the polyphenol gallic acid (GA; 3,4,5-trihydroxy benzoic acid) on the oxidation and reduction of Fe was studied. The Fe(II) oxidation rate constant decreased, increasing the permanence of Fe(II) in solutions at nM levels. At pH = 8.0 and in the absence of gallic acid, 69.3% of the initial Fe(II) was oxidized after 10 min. With 100 nM of gallic acid (ratio 4:1 GA:Fe), and after 30 min, 37.5% of the initial Fe(II) was oxidized. Fe(III) is reduced to Fe(II) by gallic acid in a process that depends on the pH and composition of solution, being faster as pH decreases. At pH > 7.00, the Fe(III) reduction rate constant in seawater was lower than in NaCl solutions, being the difference at pH 8.0 of 1.577 × 10–5 s–1. Moreover, the change of the Fe(III) rate constant with pH, within the studied range, was higher in seawater (slope = 0.91) than in NaCl solutions (slope = 0.46). The Fe(III) reduction rate constant increased with increasing ligand concentration, being the effect higher at pH 7.0 [k′ = 1.078 × 10–4 s–1; (GA) = 250 nM] compared with that at pH 8.0 [k′ = 3.407 × 10–5 s–1; (GA) = 250 nM]. Accordingly, gallic acid reduces Fe(III) to Fe(II) in seawater, making possible the presence of Fe(II) for longer periods and favoring its bioavailability.en_US
dc.languageengen_US
dc.relationOur common future ocean in the Earth system ¿ quantifying coupled cycles of carbon, oxygen, and nutrients for determining and achieving safe operating spaces with respect to tipping pointsen_US
dc.relationEfecto de la Acidificacion Oceanica, la Temperatura y El Contenido de Materia Organica en la Persistencia de Fe(Ii) en El Oceano Atlanticoen_US
dc.relationPlanificación Conjunta, Seguimiento y Observación, Mejora del Conocimiento y Sensibilización Ante Riesgos y Amezas del Cambio Climatico en la Macaronesiaen_US
dc.relation.ispartofFrontiers in Marine Scienceen_US
dc.sourceFrontiers in Marine Science [ISSN 2296-7745], v. 9, 837363, (Febrero 2022)en_US
dc.subject230220 Química microbiológicaen_US
dc.subject2510 Oceanografíaen_US
dc.subject.otherGallic aciden_US
dc.subject.otherIronen_US
dc.subject.otherComplexationen_US
dc.subject.otherRedox processen_US
dc.subject.otherSeawateren_US
dc.subject.otherOcean acidificationen_US
dc.titleOcean Acidification Effect on the Iron-Gallic Acid Redox Interaction in Seawateren_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.3389/fmars.2022.837363en_US
dc.identifier.scopus2-s2.0-85125187222-
dc.identifier.isiWOS:000761553200001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.investigacionCienciasen_US
dc.type2Artículoen_US
local.message.claim2022-11-21T11:04:09.727+0000|||rp02037|||submit_approve|||dc_contributor_author|||None*
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr1,122
dc.description.jcr3,7
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,3
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.deptGIR IOCAG: Química Marina-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Química-
crisitem.author.orcid0000-0002-9044-3758-
crisitem.author.orcid0000-0002-5637-8841-
crisitem.author.orcid0000-0002-7930-7683-
crisitem.author.orcid0000-0003-3230-8985-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNamePérez Almeida, María Norma-
crisitem.author.fullNameGonzález González, Aridane-
crisitem.author.fullNameSantana Casiano, Juana Magdalena-
crisitem.author.fullNameGonzález Dávila, Melchor-
crisitem.project.principalinvestigatorGonzález Dávila, Melchor-
crisitem.project.principalinvestigatorSantana Casiano, Juana Magdalena-
crisitem.project.principalinvestigatorGonzález González, Aridane-
Appears in Collections:Artículos
Thumbnail
Adobe PDF (3,7 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.