Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113966
DC FieldValueLanguage
dc.contributor.authorAbadal, Saücen_US
dc.contributor.authorSalgueiro, Luisen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorVilaplana, Verónicaen_US
dc.date.accessioned2022-03-08T08:40:56Z-
dc.date.available2022-03-08T08:40:56Z-
dc.date.issued2021en_US
dc.identifier.issn2072-4292en_US
dc.identifier.urihttp://hdl.handle.net/10553/113966-
dc.description.abstractThere is a growing interest in the development of automated data processing workflows that provide reliable, high spatial resolution land cover maps. However, high-resolution remote sensing images are not always affordable. Taking into account the free availability of Sentinel-2 satellite data, in this work we propose a deep learning model to generate high-resolution segmentation maps from low-resolution inputs in a multi-task approach. Our proposal is a dual-network model with two branches: the Single Image Super-Resolution branch, that reconstructs a high-resolution version of the input image, and the Semantic Segmentation Super-Resolution branch, that predicts a high-resolution segmentation map with a scaling factor of 2. We performed several experiments to find the best architecture, training and testing on a subset of the S2GLC 2017 dataset. We based our model on the DeepLabV3+ architecture, enhancing the model and achieving an improvement of 5% on IoU and almost 10% on the recall score. Furthermore, our qualitative results demonstrate the effectiveness and usefulness of the proposed approach.en_US
dc.languageengen_US
dc.relationPID2020-117142GB-I00en_US
dc.relationMCIN/AEI/10.13039/501100011033en_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [ISSN 2072-4292], v. 13(22), 4547, (Noviembre 2021)en_US
dc.subject250404 Fotogrametría geodésicaen_US
dc.subject250407 Geodesia por satélitesen_US
dc.subject332401 Satélites artificialesen_US
dc.subject.otherConvolutional neural networken_US
dc.subject.otherDeep learningen_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherSentinel-2en_US
dc.subject.otherSuper-resolutionen_US
dc.titleA dual network for super-resolution and semantic segmentation of sentinel-2 imageryen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs13224547en_US
dc.identifier.scopus2-s2.0-85119333436-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue22-
dc.relation.volume13(22)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Semantic Interpretation of Remotely Sensed Imagesen_US
dc.description.numberofpages25en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,283
dc.description.jcr5,349
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
Appears in Collections:Artículos
Adobe PDF (18,5 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.