Please use this identifier to cite or link to this item:
http://hdl.handle.net/10553/113966
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Abadal, Saüc | en_US |
dc.contributor.author | Salgueiro, Luis | en_US |
dc.contributor.author | Marcello Ruiz, Francisco Javier | en_US |
dc.contributor.author | Vilaplana, Verónica | en_US |
dc.date.accessioned | 2022-03-08T08:40:56Z | - |
dc.date.available | 2022-03-08T08:40:56Z | - |
dc.date.issued | 2021 | en_US |
dc.identifier.issn | 2072-4292 | en_US |
dc.identifier.uri | http://hdl.handle.net/10553/113966 | - |
dc.description.abstract | There is a growing interest in the development of automated data processing workflows that provide reliable, high spatial resolution land cover maps. However, high-resolution remote sensing images are not always affordable. Taking into account the free availability of Sentinel-2 satellite data, in this work we propose a deep learning model to generate high-resolution segmentation maps from low-resolution inputs in a multi-task approach. Our proposal is a dual-network model with two branches: the Single Image Super-Resolution branch, that reconstructs a high-resolution version of the input image, and the Semantic Segmentation Super-Resolution branch, that predicts a high-resolution segmentation map with a scaling factor of 2. We performed several experiments to find the best architecture, training and testing on a subset of the S2GLC 2017 dataset. We based our model on the DeepLabV3+ architecture, enhancing the model and achieving an improvement of 5% on IoU and almost 10% on the recall score. Furthermore, our qualitative results demonstrate the effectiveness and usefulness of the proposed approach. | en_US |
dc.language | eng | en_US |
dc.relation | PID2020-117142GB-I00 | en_US |
dc.relation | MCIN/AEI/10.13039/501100011033 | en_US |
dc.relation.ispartof | Remote Sensing | en_US |
dc.source | Remote Sensing [ISSN 2072-4292], v. 13(22), 4547, (Noviembre 2021) | en_US |
dc.subject | 250404 Fotogrametría geodésica | en_US |
dc.subject | 250407 Geodesia por satélites | en_US |
dc.subject | 332401 Satélites artificiales | en_US |
dc.subject.other | Convolutional neural network | en_US |
dc.subject.other | Deep learning | en_US |
dc.subject.other | Semantic segmentation | en_US |
dc.subject.other | Sentinel-2 | en_US |
dc.subject.other | Super-resolution | en_US |
dc.title | A dual network for super-resolution and semantic segmentation of sentinel-2 imagery | en_US |
dc.type | info:eu-repo/semantics/article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/rs13224547 | en_US |
dc.identifier.scopus | 2-s2.0-85119333436 | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.contributor.orcid | #NODATA# | - |
dc.identifier.issue | 22 | - |
dc.relation.volume | 13(22) | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.description.notas | This article belongs to the Special Issue Semantic Interpretation of Remotely Sensed Images | en_US |
dc.description.numberofpages | 25 | en_US |
dc.utils.revision | Sí | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ING | en_US |
dc.description.sjr | 1,283 | |
dc.description.jcr | 5,349 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q1 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,6 | |
item.grantfulltext | open | - |
item.fulltext | Con texto completo | - |
crisitem.author.dept | GIR IOCAG: Procesado de Imágenes y Teledetección | - |
crisitem.author.dept | IU de Oceanografía y Cambio Global | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-9646-1017 | - |
crisitem.author.parentorg | IU de Oceanografía y Cambio Global | - |
crisitem.author.fullName | Marcello Ruiz, Francisco Javier | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.