Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113966
DC FieldValueLanguage
dc.contributor.authorAbadal, Saücen_US
dc.contributor.authorSalgueiro, Luisen_US
dc.contributor.authorMarcello Ruiz, Francisco Javieren_US
dc.contributor.authorVilaplana, Verónicaen_US
dc.date.accessioned2022-03-08T08:40:56Z-
dc.date.available2022-03-08T08:40:56Z-
dc.date.issued2021en_US
dc.identifier.issn2072-4292en_US
dc.identifier.urihttp://hdl.handle.net/10553/113966-
dc.description.abstractThere is a growing interest in the development of automated data processing workflows that provide reliable, high spatial resolution land cover maps. However, high-resolution remote sensing images are not always affordable. Taking into account the free availability of Sentinel-2 satellite data, in this work we propose a deep learning model to generate high-resolution segmentation maps from low-resolution inputs in a multi-task approach. Our proposal is a dual-network model with two branches: the Single Image Super-Resolution branch, that reconstructs a high-resolution version of the input image, and the Semantic Segmentation Super-Resolution branch, that predicts a high-resolution segmentation map with a scaling factor of 2. We performed several experiments to find the best architecture, training and testing on a subset of the S2GLC 2017 dataset. We based our model on the DeepLabV3+ architecture, enhancing the model and achieving an improvement of 5% on IoU and almost 10% on the recall score. Furthermore, our qualitative results demonstrate the effectiveness and usefulness of the proposed approach.en_US
dc.languageengen_US
dc.relationPID2020-117142GB-I00en_US
dc.relationMCIN/AEI/10.13039/501100011033en_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing [ISSN 2072-4292], v. 13(22), 4547, (Noviembre 2021)en_US
dc.subject250404 Fotogrametría geodésicaen_US
dc.subject250407 Geodesia por satélitesen_US
dc.subject332401 Satélites artificialesen_US
dc.subject.otherConvolutional neural networken_US
dc.subject.otherDeep learningen_US
dc.subject.otherSemantic segmentationen_US
dc.subject.otherSentinel-2en_US
dc.subject.otherSuper-resolutionen_US
dc.titleA dual network for super-resolution and semantic segmentation of sentinel-2 imageryen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs13224547en_US
dc.identifier.scopus2-s2.0-85119333436-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.issue22-
dc.relation.volume13(22)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.notasThis article belongs to the Special Issue Semantic Interpretation of Remotely Sensed Imagesen_US
dc.description.numberofpages25en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,283
dc.description.jcr5,349
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,6
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IOCAG: Procesado de Imágenes y Teledetección-
crisitem.author.deptIU de Oceanografía y Cambio Global-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-9646-1017-
crisitem.author.parentorgIU de Oceanografía y Cambio Global-
crisitem.author.fullNameMarcello Ruiz, Francisco Javier-
Appears in Collections:Artículos
Adobe PDF (18,5 MB)
Show simple item record

SCOPUSTM   
Citations

13
checked on Nov 17, 2024

WEB OF SCIENCETM
Citations

12
checked on Nov 17, 2024

Page view(s)

80
checked on Jul 13, 2024

Download(s)

113
checked on Jul 13, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.