Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/113964
Título: Single-Image Super-Resolution of Sentinel-2 Low Resolution Bands with Residual Dense Convolutional Neural Networks
Autores/as: Salgueiro, Luis
Marcello Ruiz, Francisco Javier 
Vilaplana, Verónica
Clasificación UNESCO: 250407 Geodesia por satélites
332401 Satélites artificiales
Palabras clave: Sentinel-2
Super-resolution
Convolutional neural network
Deep learning
Fecha de publicación: 2021
Proyectos: Procesado Avanzado de Datos de Teledetección Para la Monitorización y Gestión Sostenible de Recursos Marinos y Terrestres en Ecosistemas Vulnerables. 
Publicación seriada: Remote Sensing 
Resumen: Sentinel-2 satellites have become one of the main resources for Earth observation images because they are free of charge, have a great spatial coverage and high temporal revisit. Sentinel-2 senses the same location providing different spatial resolutions as well as generating a multi-spectral image with 13 bands of 10, 20, and 60 m/pixel. In this work, we propose a single-image super-resolution model based on convolutional neural networks that enhances the low-resolution bands (20 m and 60 m) to reach the maximal resolution sensed (10 m) at the same time, whereas other approaches provide two independent models for each group of LR bands. Our proposed model, named Sen2-RDSR, is made up of Residual in Residual blocks that produce two final outputs at maximal resolution, one for 20 m/pixel bands and the other for 60 m/pixel bands. The training is done in two stages, first focusing on 20 m bands and then on the 60 m bands. Experimental results using six quality metrics (RMSE, SRE, SAM, PSNR, SSIM, ERGAS) show that our model has superior performance compared to other state-of-the-art approaches, and it is very effective and suitable as a preliminary step for land and coastal applications, as studies involving pixel-based classification for Land-Use-Land-Cover or the generation of vegetation indices.
URI: http://hdl.handle.net/10553/113964
ISSN: 2072-4292
DOI: 10.3390/rs13245007
Fuente: Remote Sensing [ISSN 2072-4292], v. 13(24), 5007, (Diciembre 2021)
Colección:Artículos
Adobe PDF (15,7 MB)
Vista completa

Citas SCOPUSTM   

11
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

9
actualizado el 24-nov-2024

Visitas

113
actualizado el 12-oct-2024

Descargas

200
actualizado el 12-oct-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.