
remote sensing  

Article

Single-Image Super-Resolution of Sentinel-2 Low Resolution
Bands with Residual Dense Convolutional Neural Networks

Luis Salgueiro 1 , Javier Marcello 2 and Verónica Vilaplana 1,*

����������
�������

Citation: Salgueiro, L.; Marcello, J.;

Vilaplana, V. Single-Image

Super-Resolution of Sentinel-2 Low

Resolution Bands with Residual

Dense Convolutional Neural

Networks. Remote Sens. 2021, 13, 5007.

https://doi.org/10.3390/rs13245007

Academic Editors: Igor Yanovsky and

Jing Qin

Received: 11 October 2021

Accepted: 7 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Signal Theory and Communications, Universitat Politècnica de Catalunya (UPC),
08034 Barcelona, Spain; luis.fernando.salgueiro@upc.edu

2 Instituto de Oceanografía y Cambio Global, IOCAG, Unidad Asociada ULPGC-CSIC,
35017 Las Palmas de Gran Canaria, Spain; javier.marcello@ulpgc.es

* Correspondence: veronica.vilaplana@upc.edu

Abstract: Sentinel-2 satellites have become one of the main resources for Earth observation images
because they are free of charge, have a great spatial coverage and high temporal revisit. Sentinel-2
senses the same location providing different spatial resolutions as well as generating a multi-spectral
image with 13 bands of 10, 20, and 60 m/pixel. In this work, we propose a single-image super-
resolution model based on convolutional neural networks that enhances the low-resolution bands
(20 m and 60 m) to reach the maximal resolution sensed (10 m) at the same time, whereas other
approaches provide two independent models for each group of LR bands. Our proposed model,
named Sen2-RDSR, is made up of Residual in Residual blocks that produce two final outputs at
maximal resolution, one for 20 m/pixel bands and the other for 60 m/pixel bands. The training is
done in two stages, first focusing on 20 m bands and then on the 60 m bands. Experimental results
using six quality metrics (RMSE, SRE, SAM, PSNR, SSIM, ERGAS) show that our model has superior
performance compared to other state-of-the-art approaches, and it is very effective and suitable as a
preliminary step for land and coastal applications, as studies involving pixel-based classification for
Land-Use-Land-Cover or the generation of vegetation indices.

Keywords: Sentinel-2; super-resolution; convolutional neural network; deep learning

1. Introduction

Managed by the European Space Agency (ESA), the Sentinel-2 satellites play an
important role in today’s remote sensing as they provide multispectral optical imagery
that can be used for several applications such as land cover-land use monitoring, change
detection, vegetation and soil analysis, and mapping of physical variables, among others.
Some of its characteristics are its considerable surface coverage, the high revisit time [1]
and the possibility of getting the data for free (available at [2]), democratizing images for
research, as well as launching free and commercial products, making it increasingly useful
for Earth observation data.

Each satellite provides 13 bands: 4 high-resolution (HR) bands with 10 m/pixel, 6
low-resolution (LR) bands with 20 m/pixel, and 3 very low-resolution (VLR) bands with
60 m/pixel. Due to the spectral variety and the wide swath, covering a surface of 290 km,
the satellites produce nearly 23 TB/day of data, resulting in a vast amount of data that
needs to be stored [3]. Besides storage issues, other reasons for designing sensors at
different scales were transmission bandwidth constraints or band selection that do not
require HR images, among others [4].

Spatial resolution is a fundamental parameter for the analysis of remote sensing
imagery. It is defined as the minimum distance in which two separated objects are distin-
guishable, and depends on several factors, for instance altitude, distance, and the quality of
the instruments [5]. Another relevant feature, in line with spatial resolution, is the Ground
Sampling Distance (GSD), which is the surface of the Earth represented by a pixel [6].
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Many applications require the detail of images to be at the highest possible resolution to
obtain its best performance [7,8]. Unfortunately, the excellent resolution achieved in the
visible and near-infrared (VIS-NIR) spectral bands by Sentinel-2 may not be enough in
some applications, especially to make use of the information given by the LR and VLR
bands located in the infrared (IR) and Short-wave IR (SWIR) spectrum. These bands are
suitable for a wide range of applications, such as environmental studies [9,10] and the
production of land cover maps [11,12] which motivates the study of algorithms to enhance
the LR bands’ spatial resolution.

To overcome these constraints, several approaches were proposed to improve Sentinel-
2’s low-resolution bands and, thus, increase the quality of the images beyond its sensor
limitation [7]. Among those methods, we found pansharpening techniques, which need a
panchromatic band, and Super-Resolution (SR) algorithms, which have gained popularity
over the last few years due to their great capacity for producing a HR image given a LR
image [13]. To generate the HR imagery, SR can be achieved based on one (Single-Image
Super-Resolution) or a sequence of LR images (Multi-Image Super-resolution) [14].

This paper proposes the use of Single-Image Super-Resolution techniques to enhance
the spatial quality of the LR and VLR bands, and reach the resolution of HR bands. With
the advent of Deep Neural Networks (DNN), these image processing techniques have often
been applied in remote sensing [15]. In particular, in this work, we propose a Convolutional
Neural Network (CNN) based model that increases the resolution of both sets of images.

Many authors tackle the challenge of enhancing the 20 m and 60 m bands to reach the
maximal resolution of 10 m. Some works present analytical methods and others [3,4,16]
two independent DNN models, tailored for super-resolving each band group.

As opposed to previous approaches, in this work we develop a single CNN model
that takes the 10 m, 20 m, and 60 m bands as input images and jointly produces the corre-
sponding SR bands at maximum resolution for 20 m and 60 m bands. The proposed model
reuses the super-resolved 20 m bands to produce the 60 m super-resolution, delivering
excellent qualitative and quantitative results, improving state-of-the-art techniques that
tackle the same problem. We have divided the training into two stages: first we train the
model for super-resolving the 20 m bands, and then for the 60 m bands. We also point out
different applications that demonstrate the potential improvement by using the SR images
obtained by our model.

Note that this work specifically addresses the problem of enhancing the spatial resolu-
tion of the low resolution bands of Sentinel 2. A different issue concerns improving the
Sentinel-2 spatial resolution beyond 10 m. In this case, multisensor data are needed and, in
general, expensive and very high resolution imagery is required to train and validate the
models. A pixel size of 10 m may be enough for many local and regional applications but,
due to the economic implications, we preferred to address both problems independently:
on the one hand, improving the resolution of the 20/60 m bands down to 10 m and, on the
other hand, when higher resolution is required, super-resolving these channels to higher
spatial resolutions, as included in our previous work [17].

The rest of the paper is organized as follows. In Section 2, we present a review of
related works that address the same problem. A technical description of Sentinel-2 and
the dataset used is presented in Section 3.1. In Section 3.2 we describe the proposed
model and the methodology used for training it, along with the evaluation metrics used.
Section 4 shows the results where in Section 4.1 we made a comparison with other models
and in Section 4.2 we put forward several applications that can benefit from our model.
In Section 5, we present a discussion about our results and, finally, Section 6 provides
concluding remarks.

2. Related Works

In this section, for simplicity, we will refer to LR when addressing both low resolution
Sentinel-2 bands (LR and VLR).
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One of the first options for spatial enhancement is interpolation, such as linear and
bicubic. Interpolation is simple and fast, but the resulting image is often blurry and with
low-quality [4].

Some platforms often carry two instruments on-board, a high-resolution sensor called
panchromatic (PAN), as well as a low-resolution multi-spectral (MS) sensor. The panchro-
matic band has higher spatial resolution than the MS bands but a wider spectral bandwidth
usually overlapping the spectral range of the MS. A common practice is to use this HR
band to enhance the LR MS channels using pansharpening techniques [18]. This is not
the case with Sentinel-2 satellites, as they do not carry a panchromatic sensor on-board.
Instead, the multispectral instrument on-board Sentinel-2 provides data at three different
spatial resolutions in the VIS-NIR and SWIR, whose spectral ranges do not overlap. In any
case, some pansharpening techniques were proposed for super-resolving the LR bands
using individual 10 m bands or a synthetic panchromatic band [19–24].

Some analytical methods were also proposed to improve the Sentinel-2 LR bands.
For instance, Wang et al. [25] presented a fusion algorithm that extends two common
approaches: component substitution and multi-regression analysis. They fuse HR and LR
bands to produce SR bands using a method called area-to-point regression kriging (ATPRK),
which is computationally efficient and better preserves the spectral information. This
method was previously applied to the MODIS satellite and adapted for Sentinel-2. In [26],
Brodu proposed to super-resolve the LR bands combining band-inherent information, to
maintain spectral coherency, and independent geometric information common to all bands.

However, lately, machine learning approaches have shown to outperform analytical
methods. Lanaras et al. [4] proposed a CNN with skip connections between feature maps
(resblocks), mainly focusing on detail differences between the LR and HR bands rather
than learning a direct mapping. In this manner, the model learns to sharpen the spatial
resolution of LR bands by combining the information of HR and LR bands. The LR bands
are first upsampled with bicubic interpolation and concatenated with HR bands before
entering the network.

Zhang et al. [27] proposed to use a Generative Adversarial Network (GAN) [28]
for super-resolving the LR bands. The generator uses a similar approach as in [4] but is
enhanced with more residual blocks, and trained with adversarial training. Zhu et al. [16]
used a similar methodology but, instead of using resblocks, a channel-attention
mechanism [29] was proposed to better exploit the interdependence among channels of the
feature maps and to let the network focus on more informative details. On the other hand,
Zhang et al. [3] proposed a model combining resblocks with self-attention mechanisms. In
addition, they proposed a distributed training procedure suitable for high-performance
environments, such as supercomputers, that can achieve state-of-the-art results, speeding-
up the training process while maintaining the loss of performance at minimum values for
both models. All these models improved the baseline performance established by [4] using
a dataset proposed for that purpose.

Inspired by Single Image Super-Resolution (SISR) models, Liebel et al. [7] adapted
a Super-Resolution CNN (SRCNN) [30] to work with the HR and LR bands of Sentinel-2.
Wagner et al. [8] followed a similar approach, adopting a Very Deep Super-Resolution
model (VDSR) [31] and Palsson et al. [32] proposed a modified version of the gener-
ator of Super-Resolution Generative Adversarial Network [33]. They were more inter-
ested in assessing the effects of hyper-parameters rather than obtaining optimal results.
Gargiulo et al. [34] proposed a CNN modified from a model, originally designed for pan-
sharpening, which was fast in inference mode. Wu et al. [35] proposed a Parallel Residual
Network that processes each band independently, in parallel with resblocks, before fusing
the feature maps and adding the output to the bicubic upsampling of the LR band that
is super-resolved. These models used different datasets, hindering the comparison with
previous models.

To the best of our knowledge, all works that tackle the sharpening of both sets of
LR Sentinel-2 bands use two independent CNN models, one to enhance the 20 m bands
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and the other for the 60 m bands. In this work, we propose a model that can produce
the SR of all the LR bands (20 m and 60 m) using only one single network architecture.
Our proposal splits the training into two stages, first for the 20 m bands and then for the
60 m bands, using Residual in Residual Dense Blocks (RRDB) [36] as core blocks, which
enhance resblocks proposed in [4] and adopted in other works, by reusing feature maps
from all previous layers. We start training using a group of RRDBs that mainly focus on
super-resolving the 20 m bands. Then, we expand our model by adding more RRDBs
blocks that focus on the 60 m bands. More details about the proposal are discussed in
Section 3.2.

3. Materials and Methods
3.1. Dataset

The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting
satellites, Sentinel-2A launched in 2015 and Sentinel-2B launched in 2017. Both satellites fly
in the same orbit with a phase of 180 degrees, producing high revisit frequency (around
5 days) and are equipped with a Multi-Spectral Instrument that records images at the
nadir in 13 multi-spectral bands with 3 different spatial resolutions (10 m, 20 m, and 60 m)
covering spectral frequencies ranging from the visible to the shortwave infrared. Technical
details of each band can be seen in Table 1.

Table 1. Spatial and spectral characteristics of Sentinel-2 bands. Source: [37].
.

Spectral Band
S2A

Central Wavelength
(nm)

S2A
Bandwidth *

(nm)

S2B
Central Wavelength

(nm)

S2B
Bandwidth *

(nm)

Spatial Resolution
GSD (m)

B1: Coastal Aerosol 442.7 21 442.3 21 60
B2: Blue 492.4 66 492.1 66 10
B3: Green 559.8 36 559.0 36 10
B4: Red 664.6 31 665.0 31 10
B5: Red-edge 1 704.1 15 703.8 16 20
B6: Red-edge 2 740.5 15 703.8 15 20
B7: Red-edge 3 782.8 20 779.7 20 20
B8: Near-IR 832.8 106 833.0 106 10
B8A: Near-IR narrow 864.7 21 864.0 22 20
B9: Water Vapor 945.1 20 943.2 21 60
B10: SWIR-Cirrus 1373.5 31 1376.9 30 60
B11: SWIR-1 1613.7 91 1610.4 94 20
B12: SWIR-2 2202.4 175 2185.7 185 20

* The Bandwidth (nm) is measured at Full Width Half Maximum (FWHM).

The main applications of the LR and VLR bands are devoted to environmental studies,
vegetation and land cover mapping, discrimination of snow, ice, and clouds, as well as the
retrieval of water-vapor, cirrus, and aerosol information, thus enabling a wide range of
earth observation applications [38].

As indicated, Sentinel-2 images are freely available at [2]. A dataset of Sentinel-2 Level-
1C images for sharpening the LR and VLR bands to 10 m was proposed in [4], covering
diverse regions of the world and spanning different climate zones, land cover, and biome
types. In this work, for comparison purposes, we use a dataset composed of 60 images
(45 for training and 15 for testing), performing experiments using the same train-test split.
Due to the unavailability of ground truth images (i.e., images at a higher resolution than
the original), we assume that spatial details are self-similar and scale-invariant between all
bands, as considered in previous works [4,16,35]. Thus, to generate pairs of input-target
images for training and testing, we applied Wald’s protocol [39], where images are down-
sampled, applying a Gaussian filter first, and, then, scaled in accordance to the desired
scaling factor.



Remote Sens. 2021, 13, 5007 5 of 20

3.2. Proposed Model
3.2.1. Network Architecture

The proposed model, named Sen2-RDSR for Sentinel-2 Residual Dense Super-Resolution,
is shown in Figure 1. The model takes the 10 m, 20 m, and 60 m bands as input and produces
super-resolved images for the 20 m and 60 m bands at 10 m of GSD.
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Figure 1. Sen2-RDSR model. The model produces two outputs, SR of 20 m bands and SR of 60 m bands. The RD blocks
are composed of a convolutional layer, three RRDB blocks, and a convolutional layer that reconstructs the image with the
corresponding output channels.

The architecture is formed by two branches. One that produces the SR of the 20 m
bands (SR20), using as input the original 20 m and 10 m images, and a second branch that
generates the SR of the 60 m bands (SR60) from the original 60 m, the 10 m bands, and the
super-resolved 20 m bands obtained by the first branch.

The two branches are composed of a Residual Dense block (RD) that includes a series
of Residual in Residual Dense Blocks (RRDB) with shared weights. Residual in Residual
Dense Blocks were first proposed in [36] for SISR tasks.

The RRDB performs the extraction of feature information of high complexity, aiming to
recover details in LR images. The RRDB is a combination of three Dense Blocks (Figure 2),
where the features are reused, allowing a synergistic effect and boosting the recovery of
residual details. In addition, a long skip-connection in the same block maintains coherence
with the input image. The scalar xb, usually a value between 0 and 1, acts as a residual
scaling: feature maps are multiplied by this value and scaled-down essentially to maintain
the stability during training [40]. The value of xb is fixed for all dense blocks. Several
remote sensing applications have adopted this block structure due to its great performance
in enhancing low-resolution images [17,18,41,42].
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Figure 2. Residual in Residual Dense Block (RRDB). Each 2D convolutional layer has 32 feature maps,
a 3 × 3 kernel with stride of 1.

The Dense Block [43] in a RRDB (Figure 3) is a combination of five convolutional
2D layers that are connected in a feed-forward manner, where each layer’s input comes
from its preceding layers. In this way, features are learned more effectively and the
performance is improved by using the hierarchical information from all previous layers.
Each convolutional layer has 32 filters with 3 × 3 kernels, stride 1, and Leaky-ReLU as
activation function.
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Figure 3. Dense Block. A RRDB is composed of three dense blocks scaled by Xb and combined, as
depicted in Figure 2.

In the first branch, the LR (20 m bands) image is first upsampled using bicubic inter-
polation to match the size of the HR bands (10 m bands). Then, all bands are concatenated
(C) and processed by a 2D convolutional layer that acts as a shallow feature extractor. This
layer has 128 filters with 3× 3 kernels and stride 1. Then, the feature maps pass throughout
three RRDB blocks with shared weights, and finally, are reconstructed with a 2D convolu-
tion that produces the output image with the corresponding number of channels, matching
in this case, the number of 20 m bands. Next, the output features are added to the bicubic
interpolated LR bands, thus reducing the spectral distortion in the SR bands.

The architecture of the second branch is similar to the first one but introduces the super-
resolved 20 m bands as well, which are concatenated (C) with the HR (10 m) bands and the
bicubic interpolated VLR (60 m) bands. The feature maps are processed by the sequence
of three RRDB blocks and a convolutional layer and the result is added to the bicubic
interpolated VLR image to obtain the final SR image with minimal spectral distortion.

3.2.2. Training Details

The training is done in two stages. First, we train the model to generate the super-
resolution of the 20 m bands and then, on a second stage, we train the model for super-
resolving the 60 m bands. In the second stage, the weights of all layers learned in the first
stage are frozen to avoid changes during the training. Note that the training is done in two
stages but inference is performed for the 20 m and 60 m bands at once.

In the first training stage, after applying Wald’s protocol, bands with 20 m and 40 m
(originally at 10 m and 20 m, respectively) are used as inputs, while in the second stage,
bands with 60 m, 180 m, and 360 m (initially at 10 m, 20 m, and 60 m, respectively) are
used. In both stages, the original bands are used as target images. After the generation of
the input-target image pairs, from each image we select 8000 random patches of 32 × 32
pixels to train the SR20 branch and 500 random patches to train the SR60 branch. We use
a 90–10% split for creating the training-validation subsets. For testing, each image of the
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test set is cropped into non-overlapping patches of 32 × 32 pixels for the SR20 model and
192 × 192 for the SR60 model. Each image is input to the model and, finally, reconstructed
to compute the quantitative metrics.

Models are trained for 500 epochs with early-stopping using Adam optimizer and
L1-norm as loss function. In each training stage, only the corresponding SR output is
considered for calculating the loss. The learning rate is 2×10−4 in SR20 and 5×10−5 in SR60,
with cosine annealing as the learning rate scheduler. Gradient clipping [44] is used and the
scaling factor in the RRDB block is set to xb = 0.2 for maintaining stability in training. A
batch size of 64 is set for training the models due to memory restrictions, using two Nvidia
RTX-2080 GPUS with 11 GB of GRAM, configured with Pytorch-Lightning.

3.3. Quantitative Metrics

Several metrics are considered for the quantitative evaluation of the SR bands: RMSE,
SRE, SAM, PSNR, SSIM, and ERGAS. In the following, we denote Y as the target image, X
as the SR image, both with B channels and (H, W) as spatial dimensions, µ and σ are the
mean and standard deviation, respectively, and E is the expected value.

• Root Mean Square Error (RMSE): measures the mean error in the pixel-value space.

RMSE(X,Y) =
√

E[(X−Y)2] (1)

• Signal to Reconstruction Ratio Error (SRE) [4]: measures the relative error in reference
to the power of the signal, in dB, where the higher, the better (n is the number
of pixels).

SRE(X, Y) = 10log10
E[X]2

||Y− X||21/n
(2)

• Spectral Angle Mapper (SAM) [45]: measures the spectral fidelity between two images.
It is expressed in radians, where smaller angles represent higher similarities.

SAM(X, Y) = arccos
(

X.Y
‖X‖2‖Y‖2

)
(3)

• Peak Signal to Noise Ratio (PSNR): it is one of the standard metrics used to evaluate
the quality of a reconstructed image. Here, MaxVal takes the maximum value of Y.
Higher PSNR, generally, indicates higher quality.

PSNR(X, Y) = 20log10

(
MaxVal(Y)
RMSE(X, Y)

)
(4)

• Structural Similarity (SSIM) [46]: measures the similarity of two images by considering
three aspects: luminance, contrast, and structure. SSIM takes in consideration the
mean (µ) and variance (σ) of the images, where a value of 1 corresponds to identical
images. Constants C1 = k1L and C2 = k2L are values that depend on the dynamic
range (L) of pixel values (k1 = 0.01 and k2 = 0.03 are used by default).

SSIM(X, Y) =
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ2

Y + C1)(σ
2
X + σ2

Y + C2)
(5)

• Erreur relative globale adimensionnelle de systhese (ERGAS) [47]: measures the qual-
ity of the reconstructed image considering the scaling factor (S) and the normalized
error per each channel (B). Lower values imply higher quality.

ERGAS(X, Y) = 100
S

√
1
B

B
∑

j=1

[
RMSE(Xj ,Yj)

E(Yj)

]2
(6)
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In addition to the quantitative metrics, for visual quality comparison we use, as well,
false color composites of bands {B7,B6,B5} and {B8A,B11,B12} for the 20 m bands, {B9,B9,B1}
for 60 m bands and the true RGB {B4,B3,B2} for the 10 m bands.

4. Results
4.1. Super-Resolution Results

Tables 2 and 3 show the average results for both SR tasks on the test set. We obtained
both tables in each corresponding training stage, where Wald’s protocol [39] was also
applied to the test set considering the proper scaling factor. We compare our results
with the bicubic upsampling and two state-of-the-art models that use the same dataset,
DSen2 [4] and Zhang et al. [3]. As can be noticed in Table 2, we outperformed both models
in the four metrics considered and tied in the other two, with an improvement of 0.61 in
RMSE, 0.19 in SRE and 0.2 in PSNR with the second best model. In the case of 60 m bands,
the results in Table 3 show that we outperformed in three metrics, tied in two, and lost in
one (the PSNR metric). We had a 1.11 decrease in RMSE and an increase of 0.16 in SRE, but
the difference in PSNR was 0.84.

Table 2. Results of the sharpening of 20 m bands.

RMSE SRE SAM PSNR SSIM ERGAS

Bicubic 125.68 26.44 1.21 45.82 0.82 3.33
DSen2 [4] 35.85 35.94 0.78 55.54 0.93 1.07

Zhang et al. [3] 34.99 36.19 0.75 55.77 0.93 1.03
Sen2-RDSR 34.38 36.38 0.75 55.94 0.93 1.02

Table 3. Results of the sharpening of 60 m bands.

RMSE SRE SAM PSNR SSIM ERGAS

Bicubic 162.16 19.77 1.78 37.66 0.35 2.43
DSen2 [4] 28.11 34.47 0.36 52.49 0.89 1.38

Zhang et al. [3] 26.80 34.98 0.34 52.94 0.90 1.29
Sen2-RDSR 25.69 35.14 0.34 52.10 0.90 0.41

Visual comparisons are also presented in Figures 4 and 5, where some patches with a
different sort of spatial and spectral information were used from the test set, the DSen2
images were obtained using its public repository (https://github.com/lanha/DSen2/tree/
master/models). It is worth noting that, visually, the SR images are very similar to the
target, demonstrating the low error achieved in Tables 2 and 3. To help understand the
differences between the models, we plotted the absolute errors between the results and the
targets in Figures 6 and 7.

If we compare the absolute error between the bicubic upsampling and the DL models,
there is a significant difference, which supports the idea of using DL algorithms for super-
resolution. In general, most of the error maps present dark-blue areas that correspond
to a small range of values between 0 and 50 (where the original reflectance values range
between 0 and more than 10.000). To provide a more detailed analysis, in Tables 4 and 5
we show the quantitative data at band level for RMSE and SRE, since they were the only
metrics available in the other models.

From Table 4 our model outperforms in three of the six bands considering the RMSE,
with a decrease for the B5, B8A, and B11. The decay is noticeable for bands 8A and B11,
where the drop was more than 25% for B8A and more than 30% for B11. However, the big
difference with the second-best model was in B12, where the difference was around 24%.
Regarding the SRE metric, our model consistently outperforms in all bands. Analyzing the
results on Table 5 we obtained improvements in both bands for RMSE, but with SRE we
outperformed in B1 but lost in B9.

https://github.com/lanha/DSen2/tree/master/models
https://github.com/lanha/DSen2/tree/master/models
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LR Bicubic Target DSen2 Sen2-RDSR

Figure 4. Sharpening results for Sentinel-2 20 m bands. Images correspond to different crops from the test set. Odd rows
show the false-color composite {B7,B6,B5} as RGB and even rows show the false-color composite {B12,B11,B8A}. The first
column corresponds to the original LR 20 m bands, the second column is the bicubic interpolation, the third column is the
target image, the fourth column is the result from DSen2 [4], and the fifth column is our result. The size of the images is
30× 30 pixels for LR and 60× 60 for the rest.
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Table 4. Results of the sharpening of 20 m bands (per band).

B5 B6 B7 B8A B11 B12

RMSE

Bicubic 101.23 133.35 153.96 87.37 74.14 162.34
DSen2 [4] 27.74 32.68 36.07 38.02 36.22 34.55

Zhang et al. [3] 27.48 32.27 35.58 37.46 35.56 33.68
Sen2-RDSR 26.98 35.95 41.28 27.62 24.78 42.01

SRE

Bicubic 25.42 25.89 25.66 26.80 24.44 25.81
DSen2 [4] 36.15 36.33 36.37 36.49 36.45 35.97

Zhang et al. [3] 36.26 36.44 36.49 36.62 36.66 36.22
Sen2-RDSR 36.46 36.96 36.87 36.76 37.26 36.76

Table 5. Results of the sharpening of 60 m bands (per band).

B1 B9 B1 B9

RMSE SRE

Bicubic 169.89 146.97 22.36 16.98
DSen2 [4] 29.28 27.51 37.25 34.44

Zhang et al. [3] 27.60 26.18 37.77 34.95
Sen2-RDSR 26.72 23.59 37.88 32.41

LR Bicubic Target DSen2 Sen2-RDSR

Figure 5. Sharpening results for the Sentinel-2 60 m bands. Images correspond to crops from the test set with the false-color
composite {B9,B9,B1} as RGB. The first column corresponds to the original VLR 60 m bands, the second column is the
bicubic interpolation, the third column is the target image, the fourth column is the result from DSen2 [4], and the fifth
column is our result. The size of the images is 20× 20 pixels for LR and 120× 120 for the rest.
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SR20-FC1 SR20-FC2 SR60-FC

Bicubic DSen2 Sen2-RDSR Bicubic DSen2 Sen2-RDSR

B5 B1
1

B6 B1
2

B7 B1

B8
A

B9

Figure 6. Comparison of the absolute difference between the target and the SR image per band. A small region of 100 ×
100 pixels was selected to show the difference between the models. The first row shows the false color composite for SR20
FC1:{B5,B6,B7}, FC2:{B12,B11,B8A} and SR60 FC:{B9,B9,B1} images. The remaining rows show the error maps for the bicubic
interpolation, DSen2 (images were generated from its public GitHub repository), and our results.
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SR20-FC1 SR20-FC2 SR60-FC

Bicubic DSen2 Sen2-RDSR Bicubic DSen2 Sen2-RDSR

B5 B1
1

B6 B1
2

B7 B1

B8
A

B9

Figure 7. Comparison of the absolute difference between the target and the SR image per band. A small region of 100
× 100 pixels was selected to show the difference between the models. The first row shows the color composite for SR20
FC1:{B5,B6,B7}, FC2:{B12,B11,B8A} and SR60 {B9,B9,B1} images. The remaining rows show the error maps for the bicubic
interpolation, DSen2 (images were generated from its public GitHub repository), and our results.

4.2. Applications

Having shown the excellent performance of our approach for super-resolving Sentinel-
2 bands, we present some applications that can benefit from the proposed SR model. It
is important to point out that the analysis presented in this section is simply intended to
visually demonstrate the benefits of working with the enhanced bands and not to include a
detailed quantitative study.

In general, using more spectral channels allows a better determination of the objects
spectral signature [48]; therefore, in the context of semantic segmentation, this feature
could lead to segmentation results that are more accurate [49–51]. Usually, fully annotated
ground-truth images are necessary for training deep learning models. However, dense
annotations are time-consuming and expensive to generate, and, for some remote sensing
applications, labeling requires expert knowledge or on-the-ground surveys. An alternative
solution, at least for proof of concept studies, as the ones presented in this work, is to rely
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on Support Vector Machines (SVM). This machine learning technique performs well, even
when trained with few and sparse labeled data [52–55]. In this section, SVM was applied to
show the benefits of using Sentinel-2 sharpened 20 m and 60 m bands in different scenarios.

To illustrate the convenience of using the sharpened 20 m bands, we have trained a
SVM classifier to perform Land-Cover Land-Use (LULC) classification on the image shown
in Figure 8a. The Sentinel-2 image belongs to the dataset mentioned in Section 3.1 and
corresponds to 30 December 2016. To generate the SVM maps, a SVM with radial basis
kernel was trained using 200 pixel per class.

Four classes can be appreciated in the selected scene: vegetation (green), sand (orange),
clouds (white), and shadows (black). Segmentation maps obtained only using the 10 m
bands and a combination of 10 m plus the SR 20 m bands are presented in Figure 8c,d.
Reddish pixels in Figure 8b correspond to vegetation areas. As we can see, adding the
information provided by the SR of 20 m bands can be very useful for more discriminative
results, especially in vegetation zones, as the 20 m bands were specially designed to monitor
vegetation covers.

Another application considered that highlights the benefits of improving the GSD of
the Sentinel bands are map indices, which are useful for environmental studies. In Wang
and Qu [56], the Normalized Multi-band Drought Index (NMDI), which takes into account
the soil moisture background, was proposed to monitor potential drought conditions by
using three specific 20 m bands of Sentinel-2 {B8A,B11,B12} (Equation (7)). This index uses
the difference between two liquid-water absorption bands in the shortwave-infrared region
as a measure of water sensitivity in vegetation and soil.

NMDI =
B8A− (B11− B12)
B8A + (B11− B12)

(7)

NMDI is commonly used in agriculture [57], fire monitoring [58], forest analysis [59],
etc. We have chosen a small agriculture zone to better show the performance of super-
resolution (Figure 9c). We can observe from the NMDI maps that vegetation zones contrast
better from the soil if the maps are obtained with the super-resolved bands.

(a) (b)

(c) (d)

Figure 8. Comparison of segmentation maps obtained with only the 10 m GSD bands and with a
combination of 10 m and SR 20 m bands. (a) True Color 10 m GSD (RGB); (b) False color 20 m GSD
{B7,B6,B5}; (c) Segmentation using only 10 m bands; (d) Segmentation using 10 m and 20 m.

Other interesting indices for vegetation studies are those that make use of the Red
Edge bands of Sentinel-2 [60–62]. The NDVI-RE, see Equation (8), is a modification of
the traditional NDVI (Normalized Difference Vegetation Index) that uses the Red-Edge
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bands, so it is more affected by the chlorophyll content and leads to a more accurate map,
especially in drier zones [62].

An example is shown in Figure 9d where the 20 m Red Edge bands B5 and B7 are used.
Index maps are colored using a rainbow palette where red areas represent less vigorous
vegetation. Comparing the maps with the true color image in Figure 9a, we can see that
red areas correspond to sandy (dry) regions and are better outlined than using the original
20 m bands.

NDVI-RE =
B7− B5
B7 + B5

(8)

(a) (b)

(c) (d)
Figure 9. Comparison of vegetation indices using the 20 m bands with and without super-resolution
(Sentinel-2 image of 28 September 2017, New York, U.S.A.). (a) Agriculture zone (RGB) (left: full
scene, right: zoom-in); (b) Agriculture zone {B12,B8A,B11} (Left: 20 m GSD, right: SR (10 m GSD);
(c) NMDI Index (left: original bands, right: SR bands); (d) NDVI-RE index (left: original bands,
right: SR bands).

On the other hand, remote sensing plays an important role for the effective manage-
ment and monitoring of coastal areas [63]. To show the benefits of using the SR 60 m bands,
we have selected a coastal area and the seafloor map has been obtained using the SVM
algorithm, as well. Specifically, the 60 m coastal blue band {B1} can be very helpful to derive
bathymetry and benthic mapping data in shallow waters due to its excellent penetration
capability in clear waters.

Figure 10 illustrates the results achieved in this scenario using a Sentinel-2 image from
29 June 2019 of the area of Cabrera Island, Spain. The remarkable spatial improvement in
the original coastal channel can be appreciated in Figure 10a. A color composite using the
SR coastal band is also included in the right column of Figure 10b to better appreciate the
sea bottom (in all the images, the same enhancements have been used, applying a Gaussian
histogram equalization with a 10% on brightness increase).

A reference benthic map for the visual analysis, provided by the Spanish Institute
of Oceanography [64], is included in Figure 10c. The green areas correspond to different
densities of Posidonia oceanica seagrass, gray areas relate to photophilic algae on rocky
substrates, while the remaining colors identify different types of soils. Bathymetric infor-
mation is also provided in the right column to demonstrate the complexity of the scene,
with water depths up to 30 m on the right side of the image and much higher depths on
the other side.

In particular, we chose the radial basis kernel but SVM parameters were not fine tuned
and only a mean of 500 pixel per class (0.05% of the image area) were considered during
the training. The derived SVM seafloor maps are displayed in Figure 10d. The Sentinel-2
original 10 m bands {B2, B3, B4, B8} have been considered to generate the map on the left
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side while the result adding the SR coastal band is provided on the right side. The same
training regions have been used in both cases. As expected, the coastal band does not
affect the land classification (vegetation in dark green and soil in brown); however, some
improvements are visible in water areas (vegetation in green lime color, sand in yellow, and
deepwater areas in blue) thanks to the inclusion of the coastal channel at 10 m resolution.

(a) (b)

(c) (d)
Figure 10. Comparison of classification maps with SVM using the SR blue coastal band with and
without super-resolution; (a) Coastal band (left: original, right: SR band); (b) Composites (left: RGB
{B4,B3,B2}, right: {B3,B2,B1}); (c) Reference benthic map (left: original, right: with 1 m isobaths); (d)
SVM maps (left: 10 m original bands, right: adding the SR coastal band).

5. Discussion

A comparative analysis with pansharpening techniques was not included, mainly due
to the lack of a panchromatic band in Sentinel-2. In any case, a preliminary study was
done with a few specific images of the dataset using classical pansharpening algorithms,
in which a 10 m band acted as the panchromatic channel. The NIR band had the best
performance among the available HR bands but, as expected, the spectral distortion was
quite obvious in the LR bands, due to the lack of spectral overlapping between the HR and
the LR bands. That said, depending on the application, we could apply pansharpening
algorithms, but this would require a further comprehensive analysis to study the potential
of newer and advanced pansharpening approaches.

Compared with the pansharpening paradigm, we can identify two main differences in
the proposed approach. First, the idea of using all the HR bands available to super-resolve
the LR bands as opposed to one band and, second, that these HR bands do not necessarily
need to overlap the LR bands. We make use of this first key-difference for super-resolving
the 60 m bands, where we use the 10 m bands combined with the super-resolved 20 m
bands as HR bands for super-resolving at such high scaling factor. The SR 20 m bands were
obtained with the RD-Blocks adjusted in the first stage of the training, in contrast with
other approaches that used the bicubic upsampling of these bands.

It is important to note that our comparative analysis includes two approaches that
have used the same dataset for training and testing the models. We acknowledge the
existence of other works, as stated in Section 2, that have tackled the same problem but
only provided the results for 20 m bands or, in other cases, have used other images to
provide its benchmarks. However, the visual comparison, presented in Figures 4 and 5,
shows that our model can super-resolve the LR and VLR bands with similar performance
as a state-of-the-art model such as DSen2 [4], although, it can be quite difficult to spot the
difference even for a well-trained eye. Analyzing the performance of the 60 m bands, in
Figure 5 we can see that the reconstruction using a bicubic interpolation presents obvious
lack of details, in contrast with the similarity between the SR images and target. Even
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for this scaling factor, the models can properly transfer the high-frequency information,
keeping spectral distortion at minimum.

We also provide a visual comparison of the errors per band in Figures 6 and 7 where
the details are easier to identify. Our model obtained more dark blue areas than those
presented by the DSen2 model [4].

If we analyze the errors of each band presented by the bicubic images, we can detect
a decrease in performance for bands 6, 7, and 9. These errors are attenuated by the DL
algorithms, and the results have proven the idea that high-frequency details obtained from
the HR bands can be remarkably combined.

Inspecting Figures 6 and 7 in further detail, regarding the 20 m bands, we observe
more red spot areas (absolute errors of more than 250) in DSen2 bands than in our model.
We also observe, in general, better performance in the Red-Edge bands, e.g., bands 5 and
8A, although it performs well with the SWIR bands also, even being spectrally away from
the influence of the HR bands. The good performance with band B8A can help generate
better NMDI maps, see Equation (7), which are often used for vegetation analysis.

Furthering the analysis of the 60 m bands, the absolute errors presented in
Figures 6 and 7 showed fewer red spots areas than DSen2 (errors bigger than 250), and
especially in the B9 band, where there are less light blue areas as well (errors between 100
and 150).

Tables 4 and 5 present the quantitative metrics per band where our model prevails in
general. Looking at the RMSE results for the 20 m bands, it is noticeable how our model
performs well with bands B5, B8A, and B11, where the influence of the HR band, especially
in the confluence of the red (B4) and NIR band (B8) contributes to generate a good margin
for bands B8A and B11. On the other hand, as expected, B12 has a significant drop in
performance compared to the other two benchmark models. Regarding the RMSE results
of 60 m bands, our model improves both bands consistently, again thanks to the spectral
proximity of the HR bands of Sentinel-2.

Considering the applications, Land-Use-Land-Cover (LULC) is one of the main areas
of interest in remote sensing, providing fundamental information to support regional and
local policies for sustainable development, risk prevention and assessment, environmental
protection, etc. The interest in applying automatic semantic segmentation (pixel-based
classification) to remote sensing imagery has recently increased [65], especially with the use
of Sentinel-2 satellites, because they are free of charge, have a high revisit time and spectral
variety, thanks to the development of deep convolutional neural networks for accurate
semantic segmentation. Furthermore, other relevant land applications are environmental
studies (vegetation, desertification, fires, etc.) or agriculture [57]. In these scenarios, the
use of spectral indices provides a powerful tool to monitor and map such areas. In this
context, Sentinel-2 offers the opportunity to address all the previous applications thanks to
the multispectral channels available, specially the 20 m resolution band located in the Red
Edge and SWIR.

On the other hand, Sentinel-2 provides three 60 m channels that are mainly useful
for atmospheric correction purposes. In fact, the cirrus band (Band 10) is not supplied in
the Sentinel-2 product as it does not contain surface information. However, the coastal
aerosol (Band 1), located in the lower blue part of the spectrum, can be useful as well in
coastal applications, thanks to its water penetration capability. As shown, the application
of the SR model proposed can help create better land and coastal maps, compared to
using the original bands, opening the possibility for local studies that require a high
spatial resolution.

It is important to highlight that the goal of the analysis included in Section 4.2 was
just to visually demonstrate the practicality of our model in different scenarios and not to
provide a detailed quantitative analysis or to achieve optimal mapping. For land areas,
the enhanced 20 m bands proved their benefits. In coastal scenarios, enhancing the 60 m
coastal channel can also be a good alternative to reach water depths over 30 m, particularly
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in order to put together more accurate bathymetric and seabed maps at higher water depth
and spatial resolution.

6. Conclusions

Sentinel-2 satellites provide multi-spectral images with different ground sampling
distances that enable a variety of studies and analyses of the Earth’s surface. Due to the
physical limitation of sensors and to minimize storage of data, only a small set of bands
are provided with maximal spatial resolution. In this work, we have proposed a fully
convolutional neural network that sharpens Sentinel-2 20 m and 60 m bands to 10 m GSD
to get all bands at the maximal sensor resolution. Our SR model uses residual learning and
dense connections that have proven their ability for enhancing low-resolution images in
SISR tasks. The CNN model is formed by two branches, one for the SR of 20 m bands and
the other for the 60 m bands, which are trained separately in two stages. At inference time,
however, all bands are super-resolved in the same forward pass.

Quantitative and qualitative results have shown that our method performs better
than state-of-the-art models that tackle the same problem. We have also shown that land
applications such as LULC mapping and vegetation analysis could benefit from using the
sharpened 20 m bands, and coastal studies could improve the quality of bathymetric and
seafloor mapping using the SR 60 m bands.
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Abbreviations
The following abbreviations are used in this manuscript:

ATPRK Area to Point Regression Krigging
CNN Convolutional Neural Network
DNN Deep Neural Network
ESA European Space Agency
GAN Generative Adversarial Network
GSD Ground Sampling Distance
HR High-Resolution
IR Infrared
LULC Land Use Land Cover
LR Low-Resolution
MS Multi-Spectral
NDVI Normalized Difference Vegetation Index
NDVI-RE Normalized Difference Vegetation Index Red-edge
NMDI Normalized Multi-band Drought Index
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PAN Panchromatic band
PSNR Peak Signal to Noise Ratio
RMSE Root Mean Square Error
RRDB Residual in Residual Dense Block
SAM Spectral Angle Mapper
Sen2-RDSR Sentinel-2 Residual Dense Super-Resolution
SISR Single-Image Super-Resolution
SR Super-Resolution
SRCNN Super-Resolution Convolutional Neural Network
SRE Signal to Reconstruction Ratio Error
SSIM Structural Similarity
SVM Support Vector Machine
SWIR Short-Wave Infrared
SR20 Super-Resolution of 20 m bands
SR60 Super-Resolution of 60 m bands
TB TeraByte
VDSR Very Deep Super-Resolution
VIS-NIR Visible and Near Infrared
VLR Very-Low Resolution
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