Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113820
Title: Inteligencia artificial aplicada a super-resolucion en termografia
Authors: Galván Hernández, Antonio David 
Director: Araña Pulido, Víctor Alexis 
Ticay Rivas, Jaime Roberto 
Alonso Eugenio, Víctor 
UNESCO Clasification: 120304 Inteligencia artificial
Issue Date: 2022
Abstract: Las cámaras termográficas son los dispositivos más utilizados para determinar, sin la necesidad de contacto, la temperatura de un objeto incluso cuando se encuentra a una gran distancia. No obstante, una de las limitaciones clásicas de estas cámaras es su baja resolución espacial en comparación con las cámaras de luz visible. En este as- pecto, el paradigma cambia cuando entran en escena los métodos de súper-resolución, especialmente los basados en inteligencia artificial. La idea de estos métodos es mejo- rar la resolución espacial de las imágenes mediante técnicas de aprendizaje profundo, consiguiendo resultados rápidamente y a un precio menor que cambiando el hardware. Este proyecto propone el estudio e implementación de distintos métodos de súper- resolución aplicados a imágenes termográficas de baja resolución. A partir de la apli- cación de estos métodos de súper-resolución se realizará un estudio para poder estimar las pérdidas empíricas de estos al procesar una imagen termográfica, así como su resul- tado visual en comparación con las imágenes originales de baja resolución. De la misma manera, se propone un método basado en redes neuronales capaz de corregir los datos radiométricos obtenidos de una cámara de baja resolución a partir de la distancia que existe entre esta y el blanco de estudio. Este planteamiento aportará valor al estado de la técnica, ya que no sólo se mejorará la calidad visual de las imágenes, sino el valor radiométrico que representan los píxeles. Los resultados finales son derivados de una gran campaña de medidas para la reco- lección de datos y la creación de las muestras de entrenamiento y evaluación. De esta forma, dos bases de datos de imágenes termográficas son usadas para la evaluación de los métodos del estado de la técnica y el propuesto en este trabajo, discutiendo a partir de estos resultados que métodos mejoran la calidad visual de una cámara termográfica de bajo coste, así como la mejora en la lectura de la temperatura.
Department: Departamento de Señales y Comunicaciones
Degree: Máster Universitario en Ingeniería de Telecomunicación
URI: http://hdl.handle.net/10553/113820
Appears in Collections:Trabajo final de máster
Adobe PDF (23,34 MB)

En el caso de que no encuentre el documento puede ser debido a que el centro o las/os autoras/es no autorizan su publicación. Si tiene verdadero interés en el contenido del mismo, puede dirigirse al director/a o directores/as del trabajo cuyos datos encontrará más arriba.

Show full item record

Page view(s)

285
checked on May 4, 2024

Download(s)

137
checked on May 4, 2024

Google ScholarTM

Check


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.