Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113721
Title: Approximation of immersed surfaces Into a tetrahedral mesh generated by the Meccano method
Authors: Socorro Marrero, Guillermo Valentín 
Oliver Serra, Albert 
Ruiz Gironés, Eloi
Cascón, Jose María
Rodríguez Barrera, Eduardo Miguel 
Escobar Sánchez, José María 
Montenegro Armas, Rafael 
Sárrate Ramos, Jose
UNESCO Clasification: 1206 Análisis numérico
120407 Geometrías finitas
120602 Ecuaciones diferenciales
Keywords: Meccano mesh
Kossaczký refinement
Surface parameterization
Simultaneous untangling and smoothing
Element quality
Issue Date: 2017
Publisher: Up4 Institute Of Sciences 
Project: Integración de Nuevas Metodologías en Simulación de Campos de Viento, Radiación Solar y Calidad Del Aire 
Integración de Nuevas Metodologías en Simulación de Campos de Viento, Radiación Solar y Calidad Del Aire 
Conference: XXV Congreso de Ecuaciones Diferenciales y Aplicaciones, XV Congreso de Matemática Aplicada (XXV CEDYA / XV CMA 2017) 
Abstract: In this paper, we present a new method to insert open surfaces into an existing tetrahedral mesh generated by the meccano method. The surfaces must be totally immersed in the mesh and must not intersect between them. The strategy includes a mesh refinement to obtain an initial approximation of each surface capturing its geometric features, the projection of the nodes from the approximation onto the actual surface, and the mesh optimization. The proposed method provides a high-quality conformal mesh with interpolations of the inserted surfaces. These approximations are suitable for operations where roughness is a major problem and a smoother solution is required, such as the estimation of normal vectors or the imposition of Neumann conditions.
URI: http://hdl.handle.net/10553/113721
ISBN: 978-84-944402-1-2
Source: XXV CEDYA/XV CMA, Cartagena – Murcia, 26-30 de junio de 2017
Appears in Collections:Actas de congresos
Adobe PDF (637,03 kB)
Show full item record

Page view(s)

153
checked on Oct 31, 2024

Download(s)

43
checked on Oct 31, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.