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Approximation of Immersed Surfaces Into a Tetrahedral
Mesh Generated by the Meccano Method

Guillermo V. Socorro-Marrero∗, Albert Oliver∗, Eloi Ruiz-Gironés†, José M. Cascón‡,
Eduardo Rodríguez∗, José M. Escobar∗, Rafael Montenegro∗ and José Sarrate†

Abstract— In this paper, we present a new method to insert open surfaces into an existing tetrahedral mesh generated by the
meccano method. The surfaces must be totally immersed in the mesh and must not intersect between them. The strategy includes
a mesh refinement to obtain an initial approximation of each surface capturing its geometric features, the projection of the
nodes from the approximation onto the actual surface, and the mesh optimization. The proposed method provides a high-quality
conformal mesh with interpolations of the inserted surfaces. These approximations are suitable for operations where roughness
is a major problem and a smoother solution is required, such as the estimation of normal vectors or the imposition of Neumann
conditions.

Keywords: Meccano mesh, Kossaczký refinement, surface parameterization, simultaneous untangling and smoothing, element
quality.

1 Introduction

In a wide range of application in numerical simulation, the in-
sertion of surfaces in the geometric model of the problem is
required. Such applications comprise those related with dy-
namic fronts that depends on the simulation results, interfaces
between subdomains, moving surfaces or the inclusion of new
features in an already existing geometry.

A first approach to address the approximation of surfaces is to
generate a new mesh for each scenario or time step but this so-
lution is unaffordable because of its computational cost. An
alternative is to locally remesh ([9]) the tetrahedral mesh to in-

clude the changes in the geometric model. This approach is
only suitable for changes restricted to a small region in the do-
main. Finally, mesh moving techniques ([7]) allow to track
moving surfaces and insert new ones in the mesh.

In this work we propose a novel approach to insert im-
mersed surfaces in a tetahedral mesh generated by the meccano
method. It combines mesh refinement, node projection and
mesh optimization to capture the immersed surfaces and im-
prove the quality of the resulting mesh. An academic example
is presented to illustrate the steps and analyse the performance
of the procedure.
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2 Overview of the Meccano method

The Meccano method ([6]) is an automatic tetrahedral mesh
generator for complex solids. The input data is the definition
of the boundary of the solid. From the geometry of this bound-
ary, the method creates a computational domain that coarsely
approximates the solid as a juxtaposition of simple pieces.

The solid boundary is parameterized to the boundary of the
meccano, establishing a bijective transformation between both
surfaces. The mesh generation implies a Kossaczký refinement
process performed in the computational domain, and the pro-
jection of the boundary nodes onto their actual location in the
real domain through the transformation. The locations for in-
ner nodes are obtained by means of a simultaneous untangling
and smoothing procedure that resolves inverted elements in the
mesh and improves the quality of tetrahedra. This quality is re-
lated to the similarity between cell shapes in both, the real and
computational domains.

(a)

(b)

Figure 1: Volumetric approximation: (a) before extension, as a
set of tetrahedra (gray) that intersect with the immersed surface
(red); and (b) after extension.

Note that the meccano method not only generates a valid mesh
with high-quality elements for the solid, but also provides a
piecewise parameterization of the volume of the solid to the
meccano.

3 Problem statement

This work is focused in the insertion of a simply connected,
single oriented, immersed surfaces, SM, in a tetrahedral mesh,
M, generated by the meccano method. In order to capture ge-
ometric features of the surface, the refinement of the mesh and
the relocation of nodes are allowed. Our goal is to obtain a sur-
face, SM, composed of triangles of M that approximates the
immersed surface with a given tolerance.

Under the hypothesis of nonintersecting surfaces, the insertion
of several surfaces is achieved iterating the strategy for each
one.

4 Surface insertion algorithm

The strategy for surface insertion is composed of four steps.
In the first step, the cells intersected by the immersed surface
are refined using the Kossaczký algorithm ([5]) to capture its
geometrical features, providing a coarse volumetric approxi-
mation. In the second step, a set of faces in the boundary of the
volumetric approximation is selected to approximate the sur-
face, verifying some required topological and geometric prop-
erties. Third, both, the original surface and the set of faces
in the approximation, are parameterized to the same paramet-
ric space, allowing the projection of the nodes of the approxi-
mation onto the corresponding surface. Finally, we optimize a
regularized distortion measure for tetrahedra using the Simulta-
neous Untangling and Smoothing technique, resolving inverted
elements and improving the overall quality of mesh cells.

4.1 Volumetric approximation

As a first stage, we obtain a volumetric approximation of the
surface M, composed of the set VM of tetrahedra of M that
intersect S . To capture the surface, we apply the Kossaczký
method and refine those tetrahedra on VM such that

lT ≥ lr, T ∈ M,(1)

where lT is the longest edge of the tetrahedron T , and lr is a
threshold that determines the capturing resolution. The refined
elements that still intersect S are preserved in VM. Otherwise,
the tetrahedron is removed from the volumetric approximation.
The process iterates until all the tetrahedra in VM verify con-
dition (1)

Once the refinement process is finished, the approximation VM
is extended to obtain a volume topologically equivalent to a ball
in R3 that encloses the immersed surface. For each node N in
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the boundary of VM, its adjacent tetrahedra are added to the
volumetric approximation if the Euler characteristic, χ, of N
in VM does not verify:

χ := nE − nF + nT = 1,(2)

where nE , nF and nC are, respectively, the number of edges,
faces and tetrahedra adjacent to the node.

Finally, we perform additional extensions to impose that
boundary faces of VM are parallel to any coordinate surfaces,
as shown in Figure 1.

4.2 Surface approximation

We obtain a surface approximation of S as a set of faces, SM,
in the boundary of the volumetric approximation VM. To con-
struct SM, we label the nodes of ∂VM attending to the side of
the immersed surface they are located at. Thus, a single side is
selected and we consider all the triangles in SM with the three
nodes to that side of S , see Figure 2.

(a)

(b)

Figure 2: Surface approximation: (a) labelling of nodes in VM
attending to the sides of the surface; and (b) healed version of
the surface approximation corresponding to the blue side.

In order to ensure that SM is topologically equivalent to a 2D
ball defined over ∂VM, and to avoid unresolvable element de-
generations in the projection stage, a surface healing has to be
performed. First, SM is extended to ensure that the edges on
∂SM are parallel to any coordinate axis. Then, the healing
iterates the following actions until no changes is introduced:

• Remove corbels, i. e., pairs of connected triangles in the
surface approximation with three nodes at ∂SM;

• Remove nodes on ∂SM with high connectivity, i. e., ad-
jacent to five or more triangles in SM;

• Refine tetrahedra in M with more than one triangle on
SM;

• Refine triangles of M with more than one edge in ∂SM;

• Refine edges with nodes on different surfaces (immersed
or boundary ones); and

• Refine dividing edges, i. e., edges not included in ∂SM
with nodes on ∂SM.

4.3 Surface projection

To project the nodes of the SM onto S , we compute the Floater
([2, 3]) parameterization of S and SM, denoted respectively by
ϕ and ϕM, to the same parametric space P = [0, 1]× [0, 1]

ϕ : P → S, ϕM : P → SM,(3)

presented in Figure 3. Thus, the projection is performed by
composing the two previous parameterizations. Specifically,
we obtain the new location of the node, xi, from its previous
location in the surface approximation step, xMi, according to

xi = ϕ ◦ ϕ−1
M (xMi).(4)

SSM

P

ϕϕM

Figure 3: Surface projection by means of simultaneous param-
eterization of immersed surface S (red) and surface approxi-
mation SM (blue) with the same parametric space P .
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2 Overview of the Meccano method

The Meccano method ([6]) is an automatic tetrahedral mesh
generator for complex solids. The input data is the definition
of the boundary of the solid. From the geometry of this bound-
ary, the method creates a computational domain that coarsely
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The solid boundary is parameterized to the boundary of the
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surfaces. The mesh generation implies a Kossaczký refinement
process performed in the computational domain, and the pro-
jection of the boundary nodes onto their actual location in the
real domain through the transformation. The locations for in-
ner nodes are obtained by means of a simultaneous untangling
and smoothing procedure that resolves inverted elements in the
mesh and improves the quality of tetrahedra. This quality is re-
lated to the similarity between cell shapes in both, the real and
computational domains.
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Figure 1: Volumetric approximation: (a) before extension, as a
set of tetrahedra (gray) that intersect with the immersed surface
(red); and (b) after extension.

Note that the meccano method not only generates a valid mesh
with high-quality elements for the solid, but also provides a
piecewise parameterization of the volume of the solid to the
meccano.

3 Problem statement

This work is focused in the insertion of a simply connected,
single oriented, immersed surfaces, SM, in a tetrahedral mesh,
M, generated by the meccano method. In order to capture ge-
ometric features of the surface, the refinement of the mesh and
the relocation of nodes are allowed. Our goal is to obtain a sur-
face, SM, composed of triangles of M that approximates the
immersed surface with a given tolerance.

Under the hypothesis of nonintersecting surfaces, the insertion
of several surfaces is achieved iterating the strategy for each
one.

4 Surface insertion algorithm

The strategy for surface insertion is composed of four steps.
In the first step, the cells intersected by the immersed surface
are refined using the Kossaczký algorithm ([5]) to capture its
geometrical features, providing a coarse volumetric approxi-
mation. In the second step, a set of faces in the boundary of the
volumetric approximation is selected to approximate the sur-
face, verifying some required topological and geometric prop-
erties. Third, both, the original surface and the set of faces
in the approximation, are parameterized to the same paramet-
ric space, allowing the projection of the nodes of the approxi-
mation onto the corresponding surface. Finally, we optimize a
regularized distortion measure for tetrahedra using the Simulta-
neous Untangling and Smoothing technique, resolving inverted
elements and improving the overall quality of mesh cells.

4.1 Volumetric approximation

As a first stage, we obtain a volumetric approximation of the
surface M, composed of the set VM of tetrahedra of M that
intersect S . To capture the surface, we apply the Kossaczký
method and refine those tetrahedra on VM such that

lT ≥ lr, T ∈ M,(1)

where lT is the longest edge of the tetrahedron T , and lr is a
threshold that determines the capturing resolution. The refined
elements that still intersect S are preserved in VM. Otherwise,
the tetrahedron is removed from the volumetric approximation.
The process iterates until all the tetrahedra in VM verify con-
dition (1)

Once the refinement process is finished, the approximation VM
is extended to obtain a volume topologically equivalent to a ball
in R3 that encloses the immersed surface. For each node N in
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the boundary of VM, its adjacent tetrahedra are added to the
volumetric approximation if the Euler characteristic, χ, of N
in VM does not verify:

χ := nE − nF + nT = 1,(2)

where nE , nF and nC are, respectively, the number of edges,
faces and tetrahedra adjacent to the node.

Finally, we perform additional extensions to impose that
boundary faces of VM are parallel to any coordinate surfaces,
as shown in Figure 1.

4.2 Surface approximation

We obtain a surface approximation of S as a set of faces, SM,
in the boundary of the volumetric approximation VM. To con-
struct SM, we label the nodes of ∂VM attending to the side of
the immersed surface they are located at. Thus, a single side is
selected and we consider all the triangles in SM with the three
nodes to that side of S , see Figure 2.
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Figure 2: Surface approximation: (a) labelling of nodes in VM
attending to the sides of the surface; and (b) healed version of
the surface approximation corresponding to the blue side.

In order to ensure that SM is topologically equivalent to a 2D
ball defined over ∂VM, and to avoid unresolvable element de-
generations in the projection stage, a surface healing has to be
performed. First, SM is extended to ensure that the edges on
∂SM are parallel to any coordinate axis. Then, the healing
iterates the following actions until no changes is introduced:

• Remove corbels, i. e., pairs of connected triangles in the
surface approximation with three nodes at ∂SM;

• Remove nodes on ∂SM with high connectivity, i. e., ad-
jacent to five or more triangles in SM;

• Refine tetrahedra in M with more than one triangle on
SM;

• Refine triangles of M with more than one edge in ∂SM;

• Refine edges with nodes on different surfaces (immersed
or boundary ones); and

• Refine dividing edges, i. e., edges not included in ∂SM
with nodes on ∂SM.

4.3 Surface projection

To project the nodes of the SM onto S , we compute the Floater
([2, 3]) parameterization of S and SM, denoted respectively by
ϕ and ϕM, to the same parametric space P = [0, 1]× [0, 1]

ϕ : P → S, ϕM : P → SM,(3)

presented in Figure 3. Thus, the projection is performed by
composing the two previous parameterizations. Specifically,
we obtain the new location of the node, xi, from its previous
location in the surface approximation step, xMi, according to

xi = ϕ ◦ ϕ−1
M (xMi).(4)

SSM

P

ϕϕM

Figure 3: Surface projection by means of simultaneous param-
eterization of immersed surface S (red) and surface approxi-
mation SM (blue) with the same parametric space P .
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(a) (b)

Figure 4: Mesh optimization. Improvement in the quality of the triangles in the surface approximation SM: (a) mesh with nodes
in the approximation projected onto the immersed surface; and (b) after optimization.

4.4 Mesh optimization

The projection process may introduce degenerated elements in
the mesh M. To resolve the element inversions and obtain a
valid mesh with high-quality tetrahedra, we apply the simulta-
neous untangling and smoothing technique ([1, 8]).

Specifically, the objective function to optimize is

f(x) =
∑
e

η∗e(Jφ),(5)

defined in terms of the regularized version, η∗, of the shape
distortion measure, η ([4]),

η(Jφ) =
‖Jφ‖2

3 |σ(Jφ)| 23
,(6)

where Jφ is the Jacobian matrix of the affine mapping of ele-
ments from its counterpart in the computational domain, ‖ · ‖
is the Frobenius norm, σ is the determinant, and h(·) is the
regularization function

h(σ) =
1

2

(
σ +

√
σ2 + 4δ2

)
,(7)

proposed in [1] to replace σ in the shape distortion measure (6).

For inner nodes of M, optimization is performed in the real
domain. For mesh boundary nodes and those projected to the
immersed surface, the optimization domain is the parametric
one whereas locations of nodes in the real domain are taken
into account to measure the element distortion.

5 Example: simple cube

In this section we present the insertion of the curved surface S
used in Section 4 inside the tetrahedral mesh, M, for a cube.
Figure 5 (a) shows the outline of the mesh generated by the

Meccano method, as well as the immersed surface to be in-
serted. The Kossaczký refinement allows to capture the geo-
metrical features of the surface and then, applying the strategy
described in Sections 4.1 and 4.2, we obtain the surface ap-
proximation, SM, shown in Figure 5 (b).

In the next step, the nodes of SM are projected onto the im-
mersed surface S and inverted and low-quality elements may
appear, as shown in Figure 5 (c). The simultaneous untangling
and smoothing of M provides a valid mesh and optimizes the
quality of its elements, see Figure 5 (d). The optimization re-
locates inner nodes and those that lie on surfaces (boundary of
M or immersed surface).

Figure 5 presents the histograms of qualities for the elements of
the mesh M before and after optimization. It can be observed
that the optimization resolves all the degenerated elements, in-
creasing the lowest qualities to achieve a minimum value of
0.29 and a mean value of 0.88. The standard deviation of qual-
ities is reduced from 0.36 to 0.11 in the smoothed mesh.

(a) (b)

Figure 6: Mesh quality histograms for: (a) mesh with nodes in
the approximation projected onto the immersed surfaces; and
(b) mesh after optimization.
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(a) (b)

(c) (d)

Figure 5: Steps in the insertion of an immersed curved surface in the mesh of a cube: (a) outline of the cube mesh, M, and
triangulation of the immersed surface, S; (b) refined tetrahedral mesh and surface approximation SM as a set of faces of M; (c)
projection of nodes in the approximation onto the immersed surface; and (d) smoothed final mesh.
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(a) (b)

Figure 4: Mesh optimization. Improvement in the quality of the triangles in the surface approximation SM: (a) mesh with nodes
in the approximation projected onto the immersed surface; and (b) after optimization.
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proximation, SM, shown in Figure 5 (b).

In the next step, the nodes of SM are projected onto the im-
mersed surface S and inverted and low-quality elements may
appear, as shown in Figure 5 (c). The simultaneous untangling
and smoothing of M provides a valid mesh and optimizes the
quality of its elements, see Figure 5 (d). The optimization re-
locates inner nodes and those that lie on surfaces (boundary of
M or immersed surface).

Figure 5 presents the histograms of qualities for the elements of
the mesh M before and after optimization. It can be observed
that the optimization resolves all the degenerated elements, in-
creasing the lowest qualities to achieve a minimum value of
0.29 and a mean value of 0.88. The standard deviation of qual-
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the approximation projected onto the immersed surfaces; and
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Figure 5: Steps in the insertion of an immersed curved surface in the mesh of a cube: (a) outline of the cube mesh, M, and
triangulation of the immersed surface, S; (b) refined tetrahedral mesh and surface approximation SM as a set of faces of M; (c)
projection of nodes in the approximation onto the immersed surface; and (d) smoothed final mesh.
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6 Conclusions

We have presented a novel approach to insert surfaces in a mesh
generated by the meccano method. The strategy includes a
mesh refinement step to capture the geometric features of each
surface. Then, a set of triangles of the mesh is considered to
coarsely approximate the surface. We impose to this approxi-
mation a set of topological and geometric properties that makes
it suitable for projection onto the actual surface, avoiding unre-
solvable tangles in the mesh. The nodes in the approximation
are then projected onto the correspondig surface by means of a
parameterization of both, surface and approximation, with the
same parametric space. Finally, a simultaneous untangling and
smoothing technique provides a valid mesh and improves the
quality of the elements, as shown in the quality histograms for
the cube example.

Although we have described the insertion for a single surface,
the strategy can be applied to insert several totally immersed
surfaces that do not intersect between them. Furthermore, the
method deal with triangulated surfaces and this approach can
be considered to handle any alternative definition of the im-
mersed surface. In addition, the proposed strategy is com-
puted efficiently, taking advantage of parallelism in steps of the
method such as calculation of intersections, parameterization,
projection and mesh optimization.

Additional future work will focus on handling the insertion of
intersecting surfaces and the extension of the strategy to sur-
faces with more complex topologies.
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Interval exchange transformations with flips

A. Linero Bas∗, G. Soler López†

Abstract—
Our contribution focuses on flipped interval exchange transformation and the applications to the theory of surface flows. First,
we introduce the recent results obtained in [10], in particular, we explain the way of building minimal flipped i.e.t.’s by means
of the Rauzy-Veech operator and we introduce an example for the particular case of five discontinuity points. After, we give the
notion of generalized interval exchange transformation to announce the existence of minimal flipped ∞-i.e.t.’s as stated in [4].
In the last section we expose the classification of minimal nonorientable surfaces obtained by using minimal flipped i.e.t.’s and
the suspension method. These results on flows are from [4].

1 Introduction

Interval exchange transformations, for short i.e.t.’s, have gen-
erated an active area of research from the original work of
M. Keane [9] in the seventies. The theory of i.e.t.’s has two
branches, one studying oriented i.e.t.’s and a sencond one
which focuses on flipped i.e.t.’s, f.i.e.t.’s abbreviately. The ori-
ented case has produced a profuse literature which has been
already reviewed by M. Viana, see [15]. In contrast, the liter-
ature on f.i.e.t.’s is relatively scarce. We present in this note a
recent result on minimal flipped i.e.t.’s appearing in [10], and
an application on minimal flows of nonorientable surfaces from
[4]. We strongly follow [10].

We begin by fixing the notation. An interval exchange trans-
formation of n-interval, also n-i.e.t., is an injective map T :
D ⊂ [0, l] → [0, l] such that:

• D is the union of n pairwise disjoint open intervals,
D = ∪n

i=1Ii, with Ii =]ai, ai+1[, a1 = 0, an+1 = l
and n ≥ 2;

• T |Ii is a map of constant slope equals to 1 or −1;

If T reverses the orientation in the interval set F =
{If1 , If2 , . . . , Ifk} (the slope is −1 in these intervals) for some
1 ≤ fj ≤ n then we stress it by saying that T is an inter-
val exchange transformation of n-intervals with k-flips or an
(n,k)-i.e.t.; otherwise we say that T is an interval exchange
transformation of n-intervals without flips or an oriented inter-
val exchange transformation of n-intervals. By replacing [0, l]
by S1 = [0, l]/ ≡, (0 ≡ l), we obtain the notion of circle ex-
change transformation of n intervals with k flips (abbreviating
(n, k)-c.e.t.). I.e.t.’s and c.e.t.’s are closely related: a proper
(n, k)-i.e.t. T : D ⊂ [0, l] → [0, l] generates a (ñ, k̃)-c.e.t.
T̂ : D̂ ⊂ S1 → S1 by identifying 0 ≡ l. T̂ is a proper (n, k)-
c.e.t. under supplementary assumptions easy to fulfill. In any
case, the minimality and unique ergodicity of T imply those of
T̂ .

The points ai are said to be the discontinuities of T and ai is
a false discontinuity if limx→a+

i
T (x) = limx→a−

i
T (x). We

will say that T is a proper (n, k)-i.e.t. when it has not false
discontinuities.
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