Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/113713
DC FieldValueLanguage
dc.contributor.authorMontenegro Armas, Rafaelen_US
dc.contributor.authorEscobar Sánchez, José Maríaen_US
dc.contributor.authorLópez González, José Ivánen_US
dc.contributor.authorBrovka, Marinaen_US
dc.contributor.authorOliver Serra, Alberten_US
dc.contributor.authorMontero García, Gustavoen_US
dc.date.accessioned2022-02-10T11:06:12Z-
dc.date.available2022-02-10T11:06:12Z-
dc.date.issued2017en_US
dc.identifier.citationhttps://gredos.usal.es/handle/10366/138172?show=full www.dca.iusiani.ulpgc.es/proyecto2015-2017/html/Congresos_Proyecto.htmlen_US
dc.identifier.isbn978-84-944402-1-2en_US
dc.identifier.urihttp://hdl.handle.net/10553/113713-
dc.description.abstractFor wind field simulation with isogeometric analysis, firstly it is necessary to generate a spline parameterization of the computational domain, which is an air layer above the terrain surface. This parameterization is created with the meccano method from a digital terrain model. The main steps of the meccano method for tetrahedral mesh generation were introduced in [1, 2]. Based on the volume parameterization obtained by the method, we can generate a mapping from the parametric T-mesh to the physical space [3, 4]. Then, this volumetric parameterization is used to generate a cubic spline representation of the physical domain for the application of isogeometric analysis. We consider a mass-consistent model [5] to compute the wind field simulation in the three-dimensional domain from wind measurements or a wind forecasted by a meteorological model (for example, WRF or HARMONIE). From these data, an interpolated wind field is constructed. The mass-consistent model obtains a new wind field approaching the interpolated one, but verifying the continuity equation (mass conservation) for constant density and the impermeability condition on the terrain. This adjusting problem is solved by introducing a Lagrange multiplier, that is the solution of a Poisson problem. The resulting field is obtained from the interpolated one and the gradient of the Lagrange multiplier. It is well known that if we use classical Lagrange finite elements, the gradient of the numerical solution is discontinuous over the element boundary. The advantage of using isogeometric analysis with cubic polynomial basis functions [6, 7] is that we obtain a C2 continuity for the Lagrange multiplier in the whole domain. In consequence, the resulting wind field is better approximated. Applications of the proposed technique are presented.en_US
dc.languageengen_US
dc.sourceActas del XXV CEDYA/XV CMA (Congreso de Ecuaciones Diferenciales y Aplicaciones/Congreso de Matemática Aplicada)en_US
dc.subject120602 Ecuaciones diferencialesen_US
dc.subject120407 Geometrías finitasen_US
dc.subject.otherWind Simulation, Isogeometric Analysis, Mesh optimization.en_US
dc.titleWind field simulation with isogeometric analysisen_US
dc.typeinfo:eu-repo/semantics/conferenceobjecten_US
dc.typeConferenceObjecten_US
dc.relation.conferenceXXV CEDYA/XV CMA (Congreso de Ecuaciones Diferenciales y Aplicaciones/Congreso de Matemática Aplicada)en_US
dc.description.lastpage505en_US
dc.description.firstpage498en_US
dc.investigacionCienciasen_US
dc.type2Actas de congresosen_US
dc.description.numberofpages8en_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2017en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-4164-457X-
crisitem.author.orcid0000-0002-8608-7076-
crisitem.author.orcid0000-0003-2570-5050-
crisitem.author.orcid0000-0002-3783-8670-
crisitem.author.orcid0000-0001-5641-442X-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameMontenegro Armas, Rafael-
crisitem.author.fullNameEscobar Sánchez, José M-
crisitem.author.fullNameLópez González, José Iván-
crisitem.author.fullNameBrovka, Marina-
crisitem.author.fullNameOliver Serra, Albert-
crisitem.author.fullNameMontero García, Gustavo-
Appears in Collections:Actas de congresos
Adobe PDF (449,96 kB)
Show simple item record

Page view(s)

78
checked on Jun 8, 2024

Download(s)

15
checked on Jun 8, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.