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Abstract—
For wind field simulation with isogeometric analysis, firstly it is necessary to generate a spline parameterization of the computa-
tional domain, which is an air layer above the terrain surface. This parameterization is created with the meccano method from a
digital terrain model. The main steps of the meccano method for tetrahedral mesh generation were introduced in [1, 2]. Based
on the volume parameterization obtained by the method, we can generate a mapping from the parametric T-mesh to the physical
space [3, 4]. Then, this volumetric parameterization is used to generate a cubic spline representation of the physical domain
for the application of isogeometric analysis. We consider a mass-consistent model [5] to compute the wind field simulation in
the three-dimensional domain from wind measurements or a wind forecasted by a meteorological model (for example, WRF or
HARMONIE). From these data, an interpolated wind field is constructed. The mass-consistent model obtains a new wind field
approaching the interpolated one, but verifying the continuity equation (mass conservation) for constant density and the imper-
meability condition on the terrain. This adjusting problem is solved by introducing a Lagrange multiplier, that is the solution
of a Poisson problem. The resulting field is obtained from the interpolated one and the gradient of the Lagrange multiplier. It
is well known that if we use classical Lagrange finite elements, the gradient of the numerical solution is discontinuous over the
element boundary. The advantage of using isogeometric analysis with cubic polynomial basis functions [6, 7] is that we obtain a
C2 continuity for the Lagrange multiplier in the whole domain. In consequence, the resulting wind field is better approximated.
Applications of the proposed technique are presented.

1 Introduction

One of the open problems of isogeometric analysis [8] is how
to obtain a spline parameterization of the interior of a com-
putational domain from the description of its boundary. CAD
models usually provide only the boundary surface of a solid.
The application of isogeometric analysis requires a full volu-
metric representation of the geometry. A parameterization is
suitable for analysis if there are no self-intersections. More-
over, in order to obtain an accurate numerical result, it is nec-
essary to have a good quality parameterization. Orthogonality
and uniformity are desirable for the tensor-product structured
parameterization. It is not a trivial task to obtain a good qual-

ity smooth global parametric mapping for complex domains,
and it can be very time-consuming. IGA requires an effective
method to construct a spline parameterization from the bound-
ary of the object.

In this work, we propose a optimization-based approach. To
obtain the parameterization of the object Ω (physical domain)
we deform a T-mesh of the parametric domain, the unitary cube
Ω̂ = [0,1]d , d = 2,3, until it achieves the shape of the object.
This deformation only affects the positions of the nodes, that is,
there is not any change in their connectivities: we say that both
meshes are isomorphic. Given that a point can be fully deter-
mined by the local coordinates relative to the cell in which it is
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contained, we can define a one-to-one mapping between para-
metric domain Ω̂ and the object. Mesh deformation is accom-
plished by means of the simultaneous T-mesh untangling and
smoothing procedure based on a pointwise mean ratio quality
measure. This quality metric gains both good orthogonality
and uniformity of the isoparametric curves and forces the map-
ping to be as conformal as possible. Then, spline representation
of the object is calculated by imposing interpolation conditions
using the data provided by one-to-one correspondence between
the mesh of the parametric domain and the mesh of the phys-
ical object. The interpolation is performed using polynomial
spline spaces constructed via a technique proposed in our pre-
vious work [7]. This simple strategy allows to define easily a
cubic spline space with nice properties over a given strongly
balanced quadtree/octree T-mesh. However, any other spline
basis defined over a T-mesh can be used.

The paper is organized as follows. In next section we de-
scribe the main steps of the proposed algorithm. Section 3 de-
scribes the T-mesh optimization procedure which is the key of
the method. The modeling of the geometry by means of cu-
bic splines is developed in Section 4. In Section 5 we show
an example of the application of isogeometric analysis to wind
simulation problem, where the domain is parameterized with
our method. Finally, in section 6 we present the conclusions
and set out some future lines.

2 General scheme of the method

The method is based on the ideas of our previous works on
mesh untangling and smoothing and the Meccano method
[9, 10, 11]. The algorithm includes the following stages:

1. Construction of an adapted T-mesh: An adapted T-mesh
is generated by refining the initial mesh until the input
boundary is approximated with a prescribed tolerance.
During this process, the boundary nodes of the paramet-
ric domain are mapped to the boundary of the object.

2. T-Mesh optimization: The inner nodes of the physical
T-mesh are relocated by applying a simultaneous untan-
gling and smoothing procedure.

3. Construction of a spline representation of the geometry:
Spline representation of the object is calculated by inter-
polating the data provided by the transformation between
the parametric and physical meshes of the object.

The T-meshes used in this work are hierarchical meshes with
a quadtree/octree structure, which are frequently used in engi-
neering. Due to their simplicity, tree-structured meshes are an
attractive tool for performing adaptive refinement in IGA and
geometric modelling. For spline representation of the object
we use polynomial spline spaces constructed via the technique
described in [7]. This strategy allows to define easily a cubic

spline space with nice properties over a given strongly balanced
quadtree/octree T-mesh.

3 T-mesh optimization

During construction of the adapted T-mesh in the step 1 of the
method, the boundary Γ̂k of the adapted T-mesh Ω̂k is mapped
to the boundary of the object Γ, generating the surface Γk,
which is the final approximation of Γ. The position of the in-
ner nodes are determined by means of the T-mesh optimization
procedure developed in this section, which is the key of the
method. Once the inner nodes are relocated, the resulting phys-
ical T-mesh Ωk is an approximation of the original geometry
Ω. The corresponding piecewise volumetric parameterization
is denoted as

(1) Π : Ω̂K → ΩK ,

where any point p of a cell of Ω̂K is mapped into a point q of the
transformed cell of ΩK by using an appropriate local mapping
related to the cell.

To reduce the computational effort during the optimization pro-
cess it is preferable to perform a previous relocation of the
inner nodes. For this purpose Laplacian smoothing or Coons
patch [12, 13] can be used. This previous relocation facili-
tates the untangling process, but in general does not obtain a
satisfactory mesh quality and can produce self-intersections.
Therefore, it is essential to apply an effective optimization al-
gorithm. Figure 1(a) shows an example of the adapted paramet-
ric T-mesh constructed in the previous stage, Fig. 1(b) shows
the tangled physical T-mesh after applying Coons patch, and
Fig. 1(c) illustrates the resulting optimized T-mesh. An exam-
ple of a 3D adapted parametric T-mesh and the corresponding
optimized physical T-mesh of the solid is shown in Fig. 2.

The mesh optimization procedure consists in an iterative pro-
cess where each node is moved to a new position in order to
improve the quality of the local submesh, which is the set of
elements connected to the free node. This new position of the
node is determined by minimizing an objective function based
on the mean ratio shape quality measure. This algebraic qual-
ity measure was originally introduced for a triangle, and it is
defined in terms of the Jacobian matrix of the affine mapping
from the ideal (target) triangle to the given one. It represents
the deviation of the given triangle from the ideal one. The dis-
tortion of an element is defined as the inverse of its quality.

The objective function for a given free node is constructed as
a sum of shape distortion measures of all elements of its local
submesh. For each cell of the physical T-mesh, the correspond-
ing parametric cell is used as its ideal element. Repeating the
optimization procedure for all inner nodes we achieve to mini-
mize the deformation of the physical mesh with respect to the
parametric one.
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basis defined over a T-mesh can be used.
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(a) (b) (c)

Figure 1: Stages of T-mesh construction for the Cat test model geometry. (a) Parametric T-mesh adapted to the boundary of the
geometry; (b) previous relocation by Coons patch, tangled mesh; (c) optimized physical T-mesh. The color lines represent the
correspondence between the parametric and physical boundaries.

3.1 Jacobian-based shape quality measure for a tri-
angle/tetrahedral mesh optimization

Here we briefly revise the concept of algebraic shape quality
metric for a linear simplex element, see [14, 15], and the ob-
jective function we use for a linear triangle/tetrahedral mesh
optimization. For more details see [1, 11, 16, 3].

Let S be the Jacobian matrix of the affine mapping that takes
the ideal element (target) τI into the physical d-simplex ele-
ment τ (d = 2,3). Then, quality metrics of the simplex τ can
be defined in terms of the matrix S. For example, mean ratio

q =
d σ2/d

‖S‖2 ,

is a scale, rotation and translation invariant algebraic quality
metric of τ , where σ = det(S) and ‖S‖ is the Frobenius norm
of S. The maximum value of q is 1, and it is reached when
S = µR, where µ is a scalar and R is a rotation matrix. In other
words, q attains its maximum if and only if τ and τI are simi-
lar (same shape). Besides, any degenerate simplex has quality
measure 0. The distortion measure is defined as the inverse of
its quality, i.e.,

η =
1
q
=

‖S‖2

d σ2/d .

Let x ∈ Rd be a free node whose new position is to be deter-
mined. The objective function to be minimized is defined as

K(x) =
1
N

N

∑
i=1

ηi =
1
N

N

∑
i=1

‖Si‖2

d σ2/d
i

,

where N is the number of elements connected to the free node
x and ηi is the distortion measure for the i-th element of the
local mesh.

The objective function K becomes discontinuous when the area
of any triangle tends to zero. Due to these singularities, the

function K improves the quality of valid elements but it does
not work properly when the mesh is tangled (σ ≤ 0). In
[11] we proposed a modification of K by replacing the de-
terminant σ by the positive, smooth and increasing function
h(σ) = 1

2 (σ +
√

σ2 +4δ 2). Then, the modified distortion be-
comes

η∗ =
‖S‖2

d h(σ)2/d .

This modification eliminates the asymptotes associated with
their singularities and the new objective function

K∗(x) =
1
N

N

∑
i=1

η∗
i

becomes smooth in Rd . In the feasible region (subset of Rd

where the free node could be placed for the local mesh to
be valid) the modified objective function K∗ approximates the
original function K as δ → 0, and then, the minimum of the
original and modified objective functions are nearly identical
when δ is small. When this region does not exist, the min-
imum of the modified objective function is located in such a
way that it tends to untangle the local mesh. Thus, the modi-
fied objective function allows the simultaneous untangling and
smoothing of the mesh. The value of δ is selected in terms of
the local mesh under consideration, making it as small as possi-
ble and in such a way that the evaluation of the minimum of the
modified function does not present any computational problem.
For more details see [11, 17]. The unconstrained optimization
problem can be easily solved with any standard method.
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Figure 2: Test model 1. (a) Parametric T-mesh adapted to the
boundary of the geometry; (b) optimized physical T-mesh; (c)
a section of parametric T-mesh ; (d) a section of physical T-
mesh.

3.2 Jacobian-based shape quality metric for arbi-
trary elements

To extend the concept of the shape quality metric for non-
simplicial elements (or for a higher-order simplicial ones) with
non-constant Jacobian matrix we introduce the following con-
cepts.

Let Ωe be any type physical cell of the local mesh for the free
node x. First, we define a pointwise distortion measure for the
given cell using some appropriate mapping G : Ω̂e → Ωe from
the ideal element to the physical one. Here, we use quadratic
isoparametric mapping.

Let JG(ξ ) be the Jacobian matrix of the mapping G at point
ξ . Then, the modified distortion at any point ξ of the ideal
element is defined as

η∗(ξ ) =
‖JG(ξ )‖2

d h(σ(ξ ))2/d , ξ ∈ Ω̂e.

where σ(ξ ) = det(JG(ξ )).

To asses the distortion of the entire physical element Ωe we can
define a global distortion measure by means of L1 norm of the
pointwise distortion, namely

(2) η∗
Ωe

=
1

VΩ̂e

∫

Ω̂e

η∗(ξ )dΩ̂e,

where VΩ̂e
is the volume of Ω̂e. Other norms, for example L2,

can be used.

The global modified distortion η∗
Ωe

takes values between 1 and
∞. If the physical element Ωe coincides with the ideal one, then
η∗(ξ )→ 1 when δ → 0. On the other hand, this global distor-
tion measure presents pseudo-barriers, that is, η∗

Ω → ∞ when
σ(ξ )≤ 0 and δ → 0.

The global quality of the element is defined as the inverse of its
global distortion, i.e.

q∗Ωe
=

1
η∗

Ωe

,

and it takes values from [0,1].

We define the objective function for a free node x using the
introduced global distortion measure for the cells

(3) K∗(x) =
1
N

N

∑
i=1

η∗
Ωi
(x),

being N the number of cells connected to the free node x and
η∗

Ωi
(x) the global distortion measure for the i-th cell.

The integral is evaluated by a numerical quadrature. Let
{ξ j} j=1,M be a set of quadrature points over the ideal element
Ω̂e. Then the objective function for the free node x becomes

(4) K∗(x) =
1
N

N

∑
i=1

(
M

∑
j=1

w jη∗
Ωi
(ξ j)

)
,

where w j is the corresponding weight for the quadrature point
ξ j. Thus, in practice, the objective function is based on the
pointwise distortion measure, evaluated at certain set of sam-
ple points within the ideal cell. Analogously to the triangular
mesh, the unconstrained optimization problem can be easily
solved with any standard method. To maintain a low com-
putational cost of the minimization, it is preferable to use a
few quadrature points. Also, it is preferable to evaluate the
quality at the corner vertices of the cell, because usually the
major distortion occurs at these points. Therefore, we use
Gauss-Lobatto quadrature rule that includes boundary quadra-
ture points. More specifically, we use three quadrature points
{−1,0,1} of the reference interval [−1,1].
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Figure 1: Stages of T-mesh construction for the Cat test model geometry. (a) Parametric T-mesh adapted to the boundary of the
geometry; (b) previous relocation by Coons patch, tangled mesh; (c) optimized physical T-mesh. The color lines represent the
correspondence between the parametric and physical boundaries.
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being N the number of cells connected to the free node x and
η∗

Ωi
(x) the global distortion measure for the i-th cell.

The integral is evaluated by a numerical quadrature. Let
{ξ j} j=1,M be a set of quadrature points over the ideal element
Ω̂e. Then the objective function for the free node x becomes

(4) K∗(x) =
1
N

N

∑
i=1

(
M

∑
j=1

w jη∗
Ωi
(ξ j)

)
,

where w j is the corresponding weight for the quadrature point
ξ j. Thus, in practice, the objective function is based on the
pointwise distortion measure, evaluated at certain set of sam-
ple points within the ideal cell. Analogously to the triangular
mesh, the unconstrained optimization problem can be easily
solved with any standard method. To maintain a low com-
putational cost of the minimization, it is preferable to use a
few quadrature points. Also, it is preferable to evaluate the
quality at the corner vertices of the cell, because usually the
major distortion occurs at these points. Therefore, we use
Gauss-Lobatto quadrature rule that includes boundary quadra-
ture points. More specifically, we use three quadrature points
{−1,0,1} of the reference interval [−1,1].
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Figure 3: Cat test model. Parametric domain and spline repre-
sentation of the physical domain.

4 Construction of a spline representation of the
geometry

In this section we construct a spline representation of the ge-
ometry. For simplicity, the process is described for 2D, being
the generalization to 3D obvious.

We have to obtain a global one-to-one spline transformation
S : Ω̂ = [0,1]2 → Ω that maps the parametric domain into
the physical one. For this purpose, we use polynomial spline
spaces constructed via the strategy proposed in our previous
work [7, 6]. This strategy allows to define easily cubic spline
spaces with nice properties over a given strongly balanced
quadtree/octree T-mesh. We are going to refer to these spline
functions as Extended Polynomial splines (EP-splines). Ac-
cording to the strategy, each regular node of the T-mesh has
one blending function assigned. Similarly to T-splines [18],
local knot vectors for each function are inferred by walking
across the mesh and traversing its edges. Then, in order to span
spaces with nice properties, some of the inferred function sup-
ports have to be modified applying certain modification rules.

4.1 Interpolation

Spline representation of the physical domain is build as a linear
combination of EP-spline blending functions defined over the
adapted parametric T-mesh T

S(ξ ) = ∑
α∈AT

Pα N̂α (ξ ) ,

where Pα ∈ R2 is the control point corresponding to the α-th
blending function.

Control points Pα are found by imposing interpolation condi-
tions. A standard choice for an interpolation with B-splines is
Greville abscissae, which is the averages of the knots. These
points correspond approximately to the points where the B-
spline functions attain their maximum. The generalization of
this concept for the T-mesh leads to the so-called Greville col-
location points. Dealing with a T-mesh, we do not have a global

knot vector, so a set of Greville points is obtained as the knot
average of each local knot vector, that is, for the local knot vec-
tors Ξα = {ξ1,ξ2,ξ3,ξ4,ξ5} and Hα = {η1,η2,η3,η4,η5} of
the function N̂α , its Greville point is defined as ξ α = (ξα ,ηα),
where

ξα =
ξ2 +ξ3 +ξ4

3
and ηα =

η2 +η3 +η4

3
.

In the case of our EP-spline functions, Greville points coincide
with their anchors and thus with the vertices of the T-mesh,
except for the functions that contain three repeated boundary
knots. For each point ξ β in the parametric space its image xβ
in the physical space is determined by the piece-wise mapping
Π obtained by the mesh optimization process developed in sec-
tion 3.

Finally, the control points are found from the linear system of
equations

xβ = S
(

ξ β

)
= Π

(
ξ β

)
= ∑

α∈AT

Pα N̂α

(
ξ β

)
, ∀ξ β , β ∈ AT .

We remark that the construction of the spline representation
can also be performed with any other spline basis functions de-
fined over a T-mesh.

(a) (b)

Figure 4: Cat test model. Colormap of mean ratio Jacobian.
(a) Parametric domain. (b) Physical domain.

4.2 Quality assessment of the mapping. Mean ratio
Jacobian

To assess the pointwise quality of the obtained parameteriza-
tion we appeal to the same idea used in the optimization proce-
dure. Namely, our objective function was based on the point-
wise quality measure of the local quadratic mapping for each
cell. Now we can analyze the pointwise quality measure of the
constructed spline transformation. That is, we calculate at each
point of the domain the mean ratio Jacobian given by

qS(ξ ) =
d det(JS)

2/d

‖JS‖2 ,

6 R. Montenegro et al.

where JS is the Jacobian matrix of the mapping S at the point
ξ of the parametric domain. In contrast to the scaled Jacobian,
that represents the quality of the mapping S in the sense of the
orthogonality of its isoparametric curves, the mean ratio Jaco-
bian represents both: a quality in the sense of the orthogonality
and uniformity. The mean ratio Jacobian equals 1 at the point
P0 if the mapping conserves orthogonality and produces the
same length distortion in both parametric directions, i.e. the
mapping is conformal at this point.

Figure 4 shows the resulting spline representation of the Cat
test model and the colormap of the mean ratio Jacobian, whose
minimal value is 0.26.

Figure 5 shows 3D parameterization example with its corre-
sponding colormap of mean ratio Jacobian, whose minimal
value is 0.34.

(a) (b)

(c) (d)

Figure 5: Test model 1. Colormap of mean ratio Jacobian.
(a) Parametric domain; (b) spline representation of the physi-
cal domain; (c) a section of the parametric domain; (d) corre-
sponding section in the physical domain.

5 Isogeometric analysis applications. Wind
field adjustment problem

The problem of wind field adjustment consists in finding a ve-
locity field �u over a certain complex terrain that offers the best
adjustment to some initial field �u0 obtained from experimen-
tal measures. We use a mass consistent model based on the
continuity equation of an incompressible flow with an imper-

meability boundary condition on the terrain surface Γb

∇ ·�u = 0 in Ω(5)
�n ·�u = 0 on Γb(6)

To find a field �u = (u,v,w), adjusted to the given initial field
�u0 = (u0,v0,w0), we formulate a least-square problem in the
domain Ω with the functional for a field�v = (ũ, ṽ, w̃)

(7) E(�v) =
∫

Ω

[
(ũ−u0)

2 +(ṽ− v0)
2 +(w̃−w0)

2
]

dΩ.

Then the velocities field�u is the solution of the following prob-
lem: Find�u ∈K such that

E(�u) = min
�v∈K

E(�v)

K= {�v : ∇ ·�v = 0, �n ·�v = 0 on Γb}.
(8)

This problem is equivalent to find a saddle point (�u,λ ) of the
Lagrangian

(9) L(�v,λ ) = E (�v)+
∫

Ω
λ ∇ ·�vdΩ,

being λ (x,y,z) the Lagrange multiplier.

Then the resulting wind field �u verifies the Euler-Lagrange
equations

(10) �u =�u0 +∇λ .

Substituting (10) into (5) and (6), the variational approach re-
sults in an elliptic problem for λ

−∆λ = ∇ ·�u0 in Ω
−�n · (∇λ ) =�n ·�u0 on Γb

λ = 0 on Γa

(11)

For more details about wind field adjustment model see [19,
20].

Numerical solution for the function λ is found via isogeometric
analysis. Then, we obtain the wind field �u from equation (10).
Here we solve the problem over the orography of the La Palma
island with a constant initial wind velocity �u0 = (10,0,0) m/s.
To solve the elliptic problem (11) we need to construct a do-
main parameterization adapted to the singularities of the ter-
rain. Figure 6(a) shows the interior of the computational do-
main, which includes a 10 km air layer above the terrain sur-
face. Streamlines of the adjusted wind field �u are shown in
Fig. 6(b). The black arrow indicates the direction of the initial
wind velocity �u0. It can be observed that the red streamlines
started from the points close to the surface tend to follow the
terrain orography. The blue streamlines start at the points with
the same x,y coordinates but higher z coordinate, and it can be
appreciated that they are less influenced by the orography.
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Figure 3: Cat test model. Parametric domain and spline repre-
sentation of the physical domain.

4 Construction of a spline representation of the
geometry

In this section we construct a spline representation of the ge-
ometry. For simplicity, the process is described for 2D, being
the generalization to 3D obvious.

We have to obtain a global one-to-one spline transformation
S : Ω̂ = [0,1]2 → Ω that maps the parametric domain into
the physical one. For this purpose, we use polynomial spline
spaces constructed via the strategy proposed in our previous
work [7, 6]. This strategy allows to define easily cubic spline
spaces with nice properties over a given strongly balanced
quadtree/octree T-mesh. We are going to refer to these spline
functions as Extended Polynomial splines (EP-splines). Ac-
cording to the strategy, each regular node of the T-mesh has
one blending function assigned. Similarly to T-splines [18],
local knot vectors for each function are inferred by walking
across the mesh and traversing its edges. Then, in order to span
spaces with nice properties, some of the inferred function sup-
ports have to be modified applying certain modification rules.

4.1 Interpolation

Spline representation of the physical domain is build as a linear
combination of EP-spline blending functions defined over the
adapted parametric T-mesh T

S(ξ ) = ∑
α∈AT

Pα N̂α (ξ ) ,

where Pα ∈ R2 is the control point corresponding to the α-th
blending function.

Control points Pα are found by imposing interpolation condi-
tions. A standard choice for an interpolation with B-splines is
Greville abscissae, which is the averages of the knots. These
points correspond approximately to the points where the B-
spline functions attain their maximum. The generalization of
this concept for the T-mesh leads to the so-called Greville col-
location points. Dealing with a T-mesh, we do not have a global

knot vector, so a set of Greville points is obtained as the knot
average of each local knot vector, that is, for the local knot vec-
tors Ξα = {ξ1,ξ2,ξ3,ξ4,ξ5} and Hα = {η1,η2,η3,η4,η5} of
the function N̂α , its Greville point is defined as ξ α = (ξα ,ηα),
where

ξα =
ξ2 +ξ3 +ξ4

3
and ηα =

η2 +η3 +η4

3
.

In the case of our EP-spline functions, Greville points coincide
with their anchors and thus with the vertices of the T-mesh,
except for the functions that contain three repeated boundary
knots. For each point ξ β in the parametric space its image xβ
in the physical space is determined by the piece-wise mapping
Π obtained by the mesh optimization process developed in sec-
tion 3.

Finally, the control points are found from the linear system of
equations

xβ = S
(

ξ β

)
= Π

(
ξ β

)
= ∑

α∈AT

Pα N̂α

(
ξ β

)
, ∀ξ β , β ∈ AT .

We remark that the construction of the spline representation
can also be performed with any other spline basis functions de-
fined over a T-mesh.

(a) (b)

Figure 4: Cat test model. Colormap of mean ratio Jacobian.
(a) Parametric domain. (b) Physical domain.

4.2 Quality assessment of the mapping. Mean ratio
Jacobian

To assess the pointwise quality of the obtained parameteriza-
tion we appeal to the same idea used in the optimization proce-
dure. Namely, our objective function was based on the point-
wise quality measure of the local quadratic mapping for each
cell. Now we can analyze the pointwise quality measure of the
constructed spline transformation. That is, we calculate at each
point of the domain the mean ratio Jacobian given by

qS(ξ ) =
d det(JS)

2/d

‖JS‖2 ,

6 R. Montenegro et al.

where JS is the Jacobian matrix of the mapping S at the point
ξ of the parametric domain. In contrast to the scaled Jacobian,
that represents the quality of the mapping S in the sense of the
orthogonality of its isoparametric curves, the mean ratio Jaco-
bian represents both: a quality in the sense of the orthogonality
and uniformity. The mean ratio Jacobian equals 1 at the point
P0 if the mapping conserves orthogonality and produces the
same length distortion in both parametric directions, i.e. the
mapping is conformal at this point.

Figure 4 shows the resulting spline representation of the Cat
test model and the colormap of the mean ratio Jacobian, whose
minimal value is 0.26.

Figure 5 shows 3D parameterization example with its corre-
sponding colormap of mean ratio Jacobian, whose minimal
value is 0.34.

(a) (b)

(c) (d)

Figure 5: Test model 1. Colormap of mean ratio Jacobian.
(a) Parametric domain; (b) spline representation of the physi-
cal domain; (c) a section of the parametric domain; (d) corre-
sponding section in the physical domain.

5 Isogeometric analysis applications. Wind
field adjustment problem

The problem of wind field adjustment consists in finding a ve-
locity field �u over a certain complex terrain that offers the best
adjustment to some initial field �u0 obtained from experimen-
tal measures. We use a mass consistent model based on the
continuity equation of an incompressible flow with an imper-

meability boundary condition on the terrain surface Γb

∇ ·�u = 0 in Ω(5)
�n ·�u = 0 on Γb(6)

To find a field �u = (u,v,w), adjusted to the given initial field
�u0 = (u0,v0,w0), we formulate a least-square problem in the
domain Ω with the functional for a field�v = (ũ, ṽ, w̃)

(7) E(�v) =
∫

Ω

[
(ũ−u0)

2 +(ṽ− v0)
2 +(w̃−w0)

2
]

dΩ.

Then the velocities field�u is the solution of the following prob-
lem: Find�u ∈K such that

E(�u) = min
�v∈K

E(�v)

K= {�v : ∇ ·�v = 0, �n ·�v = 0 on Γb}.
(8)

This problem is equivalent to find a saddle point (�u,λ ) of the
Lagrangian

(9) L(�v,λ ) = E (�v)+
∫

Ω
λ ∇ ·�vdΩ,

being λ (x,y,z) the Lagrange multiplier.

Then the resulting wind field �u verifies the Euler-Lagrange
equations

(10) �u =�u0 +∇λ .

Substituting (10) into (5) and (6), the variational approach re-
sults in an elliptic problem for λ

−∆λ = ∇ ·�u0 in Ω
−�n · (∇λ ) =�n ·�u0 on Γb

λ = 0 on Γa

(11)

For more details about wind field adjustment model see [19,
20].

Numerical solution for the function λ is found via isogeometric
analysis. Then, we obtain the wind field �u from equation (10).
Here we solve the problem over the orography of the La Palma
island with a constant initial wind velocity �u0 = (10,0,0) m/s.
To solve the elliptic problem (11) we need to construct a do-
main parameterization adapted to the singularities of the ter-
rain. Figure 6(a) shows the interior of the computational do-
main, which includes a 10 km air layer above the terrain sur-
face. Streamlines of the adjusted wind field �u are shown in
Fig. 6(b). The black arrow indicates the direction of the initial
wind velocity �u0. It can be observed that the red streamlines
started from the points close to the surface tend to follow the
terrain orography. The blue streamlines start at the points with
the same x,y coordinates but higher z coordinate, and it can be
appreciated that they are less influenced by the orography.
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(a) (b)

Figure 6: Wind field adjustment problem. (a) The interior of the computational domain (a 10 km air layer above the terrain
surface). (b) Streamlines of the adjusted field �u. Red streamlines start from the points situated 300 m above terrain surface; blue
streamlines start from the points with the same x,y coordinates and at height of 1500 m.

6 Conclusions and challenges

We have presented an affective tool for obtaining a single patch
spline parameterization for 2D and 3D geometries. A new T-
mesh untangling and smoothing procedure has been applied
in order to define an isomorphic transformation between para-
metric and physical T-meshes. This transformation provides
the data to perform interpolation and construct a spline repre-
sentation of the object. The presented technique is simple and
easy to implement. The algorithm has been tested in several
2D and 3D geometries and, for all of them, we have obtained a
high quality parametric transformation with strictly positive Ja-
cobian. Also, we have presented an example of application of
isogeometric analysis to wind field simulation problem, where
the domain is parameterized with our technique. In our future
work we plan to develop a more direct parameterization ap-
proach based on optimization of the control points of the spline
mapping instead of its piecewise approximation.
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Figure 6: Wind field adjustment problem. (a) The interior of the computational domain (a 10 km air layer above the terrain
surface). (b) Streamlines of the adjusted field �u. Red streamlines start from the points situated 300 m above terrain surface; blue
streamlines start from the points with the same x,y coordinates and at height of 1500 m.

6 Conclusions and challenges

We have presented an affective tool for obtaining a single patch
spline parameterization for 2D and 3D geometries. A new T-
mesh untangling and smoothing procedure has been applied
in order to define an isomorphic transformation between para-
metric and physical T-meshes. This transformation provides
the data to perform interpolation and construct a spline repre-
sentation of the object. The presented technique is simple and
easy to implement. The algorithm has been tested in several
2D and 3D geometries and, for all of them, we have obtained a
high quality parametric transformation with strictly positive Ja-
cobian. Also, we have presented an example of application of
isogeometric analysis to wind field simulation problem, where
the domain is parameterized with our technique. In our future
work we plan to develop a more direct parameterization ap-
proach based on optimization of the control points of the spline
mapping instead of its piecewise approximation.
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