Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/112928
DC FieldValueLanguage
dc.contributor.authorSánchez Clemente, Antonio Joséen_US
dc.contributor.authorEntrena, Luisen_US
dc.contributor.authorHrbacek, Radeken_US
dc.contributor.authorSekanina, Lukasen_US
dc.date.accessioned2021-12-13T11:33:11Z-
dc.date.available2021-12-13T11:33:11Z-
dc.date.issued2016en_US
dc.identifier.issn0018-9529en_US
dc.identifier.urihttp://hdl.handle.net/10553/112928-
dc.description.abstractTechnology scaling poses an increasing challenge to the reliability of digital circuits. Hardware redundancy solutions, such as triple modular redundancy (TMR), produce very high area overhead, so partial redundancy is often used to reduce the overheads. Approximate logic circuits provide a general framework for optimized mitigation of errors arising from a broad class of failure mechanisms, including transient, intermittent, and permanent failures. However, generating an optimal redundant logic circuit that is able to mask the faults with the highest probability while minimizing the area overheads is a challenging problem. In this study, we propose and compare two new approaches to generate approximate logic circuits to be used in a TMR schema. The probabilistic approach approximates a circuit in a greedy manner based on a probabilistic estimation of the error. The evolutionary approach can provide radically different solutions that are hard to reach by other methods. By combining these two approaches, the solution space can be explored in depth. Experimental results demonstrate that the evolutionary approach can produce better solutions, but the probabilistic approach is close. On the other hand, these approaches provide much better scalability than other existing partial redundancy techniques.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Reliabilityen_US
dc.sourceIEEE Transactions on Reliability [ISSN 0018-9529], v. 65(4), p. 1871-1883, (Diciembre 2016)en_US
dc.subject330790 Microelectrónicaen_US
dc.subject330703 Diseño de circuitosen_US
dc.subject.otherApproximate logic circuiten_US
dc.subject.otherError mitigationen_US
dc.subject.otherEvolutionary computingen_US
dc.subject.otherSingle-event transient (SET)en_US
dc.subject.otherSingle-event upset (SEU)en_US
dc.titleError Mitigation Using Approximate Logic Circuits: A Comparison of Probabilistic and Evolutionary Approachesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1109/TR.2016.2604918en_US
dc.identifier.scopus2-s2.0-84990841014-
dc.identifier.isiWOS:000391284600019-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.description.lastpage1883en_US
dc.identifier.issue4-
dc.description.firstpage1871en_US
dc.relation.volume65(4)en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages13en_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,335
dc.description.jcr2,79
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.orcid0000-0002-2142-7885-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameSánchez Clemente, Antonio José-
Appears in Collections:Artículos
Show simple item record

SCOPUSTM   
Citations

35
checked on Dec 8, 2024

WEB OF SCIENCETM
Citations

24
checked on Dec 8, 2024

Page view(s)

55
checked on Mar 2, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.