Please use this identifier to cite or link to this item: http://hdl.handle.net/10553/112856
DC FieldValueLanguage
dc.contributor.authorColmenar-Santos, Antonioen_US
dc.contributor.authorMuñoz-Gómez, Antonio-Miguelen_US
dc.contributor.authorRosales Asensio, Enriqueen_US
dc.contributor.authorFernandez Aznar, Gregorioen_US
dc.contributor.authorGalan-Hernandez, Noemien_US
dc.date.accessioned2021-12-03T13:51:35Z-
dc.date.available2021-12-03T13:51:35Z-
dc.date.issued2022en_US
dc.identifier.issn0142-0615en_US
dc.identifier.urihttp://hdl.handle.net/10553/112856-
dc.description.abstractThis paper focuses on the optimisation of electricity consumption in residential buildings. To deal with the increase in electricity consumption, the intermittency of renewable energy generation and grid contingencies, a greater effort is required towards residential management optimisation. A novel adaptive model predictive control algorithm is proposed to achieve this objective. The challenges for this research included recognising and modelling the economic and technical constraints of the sources and appliances and addressing the uncertainties concerning the weather and user behaviour. Data-driven models are developed and trained to predict the user behaviour and buildings. Artificial neural networks and statistical models based on the weighted moving average are proposed to capture the patterns of deferrable and non-deferrable appliances, battery storage, electric vehicles, photovoltaic modules, buildings and grid connections. A dual optimisation method is devised to minimise the electricity bill and achieve thermal comfort. The proposed optimisation solver is a two-step optimisation method based on genetic algorithm and mixed integer linear programming. A comprehensive simulation study was carried out to reveal the effectiveness of the proposed method through a set of simulation scenarios. The results of the quantitative analysis undertaken as part of this study show the effectiveness of the proposed algorithm towards reducing electricity charges and improving grid elasticity.en_US
dc.languageengen_US
dc.relation.ispartofInternational Journal of Electrical Power and Energy Systemsen_US
dc.sourceInternational Journal of Electrical Power and Energy Systems [ISSN 0142-0615], n. 137, (Mayo 2022)en_US
dc.subject332205 Fuentes no convencionales de energíaen_US
dc.subject332201 Distribución de la energíaen_US
dc.titleAdaptive model predictive control for electricity management in the household sectoren_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1016/j.ijepes.2021.107831en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcNoen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,533-
dc.description.jcr5,2-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.orcid0000-0003-4112-5259-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNameRosales Asensio, Enrique-
Appears in Collections:Artículos
Show simple item record

WEB OF SCIENCETM
Citations

9
checked on Dec 15, 2024

Page view(s)

104
checked on May 23, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.