Identificador persistente para citar o vincular este elemento:
				https://accedacris.ulpgc.es/jspui/handle/10553/11277
			
		| Título: | TV-L1 optical flow estimation | Autores/as: | Sánchez, Javier Meinhardt-Llopis, Enric Facciolo, Gabriele | Clasificación UNESCO: | 220990 Tratamiento digital. Imágenes | Palabras clave: | Optical flow Total variation | Fecha de publicación: | 2012 | Publicación seriada: | Image Processing On Line | Resumen: | This article describes an implementation of the optical flow estimation method introduced by Zach, Pock and Bischof. This method is based on the minimization of a functional containing a data term using the L norm and a regularization term using the total variation of the flow. The main feature of this formulation is that it allows discontinuities in the flow field, while being more robust to noise than the classical approach. The algorithm is an efficient numerical scheme, which solves a relaxed version of the problem by alternate minimization. | URI: | https://accedacris.ulpgc.es/handle/10553/11277 | ISSN: | 2105-1232 | DOI: | 10.5201/ipol.2013.26 | Fuente: | Image Processing On Line [ISSN 2105-1232], p. 1-13 | Derechos: | by-nc-nd | 
| Colección: | Artículos | 
Citas de WEB OF SCIENCETM
 Citations
										
									
									
		
			
				
					
						256
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Visitas
202
										actualizado el 01-nov-2024
									
								Descargas
372
										actualizado el 01-nov-2024
									
								Google ScholarTM
							Verifica
						Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.

