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Abstract

This article describes an implementation of the optical flow estimation method introduced by
Zach, Pock and Bischof in [6]. This method is based on the minimization of a functional
containing a data term using the L' norm and a regularization term using the total variation of
the flow. The main feature of this formulation is that it allows discontinuities in the flow field,
while being more robust to noise than the classical approach in [2]. The algorithm is an efficient
numerical scheme, which solves a relaxed version of the problem by alternate minimization.

Source Code

A C implementation of this algorithm is provided. The source code and an online demo are
accessible at the IPOL web part of this articlel.

1 Introduction

The method described in [6] is based on the brightness constancy assumption. Let I(x,y,t) be a
video sequence, and let (z(t), y(t)) be the trajectory of a point in the image plane, then the brightness
constancy assumption states that I(x(t),y(t),t) is constant:
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This last identity must hold for the trajectories of every point in the image domain, whose

velocities at one instant define a vector field u(z,y) = (ui(z,y),u2(x,y)). Thus, the vector field
u(zx,y) satisfies pointwise the following linear condition, called the optical flow constraint equation
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For every point in the image domain, the condition VI - u + %I = (0 is a linear equation in two
variables (the components of u). Thus, there are altogether twice as many variables as equations, and
the resulting linear system is underdetermined. A standard way to solve underdetermined systems
is to add a smoothness condition, that forces u to be regular in some sense. The proposal of Horn
and Schunck [2] was to select the u that minimizes the following functional:

o 2
EHorn,Schunck<u) - / (VI -u+ §]> +« (|VU1|2 + |VU2|2) . (4)
Q

This minimization problem is easy to solve by standard methods, and the resulting flow esti-
mations are good enough for many purposes. The main shortcoming of the ]Vu1\2 + ]Vu2|2 term
is that it penalizes high gradients of u and it effectively disallows discontinuities. Equation (3) is
suitable if the image data is continuous in time. Typically, this equation is replaced by the non-linear
formulation, [;(x 4+ u) — Ip(x) = 0, to account for general image sequences. The non-linear term
I;(x 4+ u) can be linearized using Taylor expansions, yielding the following equation:

p(u) = VI(x+1u°) - (u—u") + I(x +1u°) — Ih(x) =0, (5)

with u® a close approximation to u. The Horn-Schunck functional can be modified to allow discon-
tinuities in the flow field by changing the quadratic factors, and this results in the method described
here. The proposed algorithm can be understood as a minimization of the following energy functional,
which is the sum of the total variation of u and an L' attachment term:

w) = / V] + [Vua] + Alp(u)] (6)

An efficient way to minimize this energy functional is to introduce the following convex relaxation:

Ey(u,v) = /ﬁvmy+wmﬂ+ = v[2 4+ A |p(v)]. (7)

Setting 6 to a very small value forces the minimum of Ey to occur when u and v are nearly equal,
reducing to the original energy E, defined in equation (6). The interest of this relaxation is that Ej
can be minimized by alternatively fixing one of u or v, and solving for the other variable.

1. Fixed v, solve
1
mm/ \Vuq| + [Vus| + o5 |u—v| (8)

2. Fixed u, solve

1
min/—\u—v\2+)\]p(v)|. ()
v o) 26

The first sub-problem fits the total variation denoising model of Rudin-Osher-Fatemi [4], which
can be solved by Chambolle’s duality-based algorithm [1]. The second sub-problem does not depend
on spatial derivatives of v, so it can be solved point-wise by thresholding.

2 Numerical Scheme

The solution to the first minimization problem stated above can be obtained by computing the fixed
point of the following iteration over the dual vector fields p; and ps:

bl pk+1/0V ( SRR Gdiv(pfl))
Pa =177 7/0 |V (Vi + 6div(ph))

de{1,2}, (10)
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and recovering u as

ul = okt 4 0div(ph), d € {1,2}. (11)

The second minimization problem can be solved as follows:

Vk‘-i-l — uk:-f—l + TH(uk+1, uO)’ (12)
with the thresholding operation
AV I (x + uP) ifp(u,u®) < —\0 |VI;(x 4 u®)|’
TH(u,u’) :={ —\0VI(x +u’) ifp(u,u®) > M0 VI (x +u®)]> . (13)

0
—plu, ) T i [p(u,u”)| < A9 VI (x +uf)

This thresholding operation includes the information of the attachment term. When the objects
move beyond the image limits, it is not possible to compute p, and it is convenient to disable this
thresholding. Over these points, it is better to use only the regularization term.

The input of the algorithm is a pair of images Io(x) and I;(x), with x = (4, 7) the pixel index.
The output is a vector field u(x) = (u1(x), us(x)). Note that the residual, p(u), is a scalar field (i.e.,
a gray-valued image), and its computation involves a warping of I; and VI; by the deformation u’.
The vector field u must be close to u, so that the approximation error of the Taylor expansions

above is small. The approximation field u' is effectively computed by a multiscale scheme.

2.1 Numerical details

There are some numerical issues to be taken into account when implementing the algorithm. For
example, it is essential for the difference schemes used to compute the divergence and the gradient
to be adjoint linear operators, so that the Stokes theorem holds exactly. Here are the precise choices
for this algorithm, for an image of size (N,, N,):

e To compute the gradient of the image I;, we use central differences along each direction, with
Neumann boundary conditions.

2
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e To compute the gradient of each component of the flow u, we use forward differences with
Neumann boundary conditions.

o w(i+1,j) —u(i,j) ifl <i<N,
_U<Z)]> = .- )
ox 0 ifi = N,

(15)

o . Juli,j+1)—u(i,j) ifl <j<N,
9 i f) = (i,J +1) — u(i, j) fl<j <Ny
dy 0 ifj = N,



e For computing the divergences of the dual variables p, we use the adjoint of the gradient of u,
which corresponds to using backward differences:

(p1(i, ) —p(i—1,5) ifl <i< N,
div(p)(i, j) = { p1(4, ) ifi =1
| —pi(i — 1,5) ifi = N,
(2(3,5) — po(i,j — 1) ifl < j <N,
+ < pa(i, ) ifj =1 . (16)
(—p2(i,5 — 1) ifj = N,

e To warp the image I; by a flow field u’, we evaluate I, (x + u’(x)) using bicubic interpolation.

3 Algorithm

The algorithm that implements the method can be separated in two modules: a procedure that
calculates the optical flow at a given scale, using the above numerical scheme; and a main algorithm
that implements the pyramidal scheme and calls the procedure to obtain approximate solutions.

The procedure updates a vector field u and uses three temporary vector fields v, p; and p», to
perform intermediate computations. The initial value u’ of u is given by the enclosing multiscale
procedure, and it is zero at the coarsest level.

Procedure TV-L' optic flow(ly, I1,u", 7, )\, 0, &, Npaziter Nwarps)
1 pl <— (0,0)

2 P2 — (070)

3 for w <1 to Nygps do

4 Compute I (x + u’(x)), VI;(x + u’(x)) using bicubic interpolation
5 n <0

6 while n < Naziter and stopping_criterion > ¢ do

7 v < TH(u,u’)

8 u < v+ 6div(p)

9 p < %

10 n<n+1

11 end

12 end

In order to stop the algorithm before the default number of iterations (Np,aziter ), We use a stopping
criterion based on the L? distance between consecutive values of u. When this distance is smaller than
a given threshold, we assume that the algorithm has already converged. If u*, u**! are successive
values of u, the stopping criterion is

N;Ny Z (u'f“(z',j) - Ulf(Z,J))Q + (ugH(i,j) — ug(z,j))2 < g2 (17)

The procedure detects small displacements, but it fails when the correct magnitude of u is larger
than about one pixel (depending on the smoothness of the image). In practice, to detect displace-
ments larger than one pixel, it is useful to work with downscaled versions of the input images, where
the sought for displacements are small enough. Then, the large (and rough) displacements obtained
at the downscaled level can be refined at the original scale.
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A standard way to organize this process is by means of a pyramid of scales: a set of downscaled
versions of the input images. In order to create the pyramid of images, we follow the same strategy
as in [3]. To downscale an image, it is first convolved with a Gaussian kernel and then sampled using
bicubic interpolation. We use a downsampling factor, n € (0, 1), that allows for smoother transitions
between the scales.

The algorithm is first run at the coarsest level, and the result is used as starting point in the
finer levels. Algorithm 2 handles this pyramidal structure and relies on the previous procedure to
estimate the optical flows at differents scales.

Algorithm 2: Pyramidal structure management
IHPUtZ [07 [17 T, )\7 97 g, m, Nmaxitera Nwarpsy Nscales
Output: u

1 Normalize images between 0 and 255

2 Convolve the images with a Gaussian of o = 0.8

3 Create the pyramid of images I°® using n (with s = 0,..., Nycgres — 1)
4 ulVseales—1 (0,0)

5 for s < Nyues — 1 to 0 do

6 TV-L' optic flow(ly, I1,u’, 7, N, 0, &, Npaziters Nwarps)

7 if s > 0 then

8 ul(x) = 2u¥(x/n)

9 end

10 end

An improved version of this algorithm is described in [5], which introduces two filtering steps: a
pre-processing of the input images by a structure-texture decomposition; and a median filtering of
the optical flow after the warping step, enhancing the regularity of the flow.

4 Explanation of the parameters

In this section we explain the parameters of the method and give reasonable default values. The
algorithm depends on six parameters: time step (7), data attachment weight (), tightness (6),
stopping criterion threshold (¢), downsampling factor (n), number of scales (Ngeqes), number of
warps (Nyarps)-

e 7 is the time step of the numerical scheme. In [1] it is shown that the numerical scheme converges
for values of 7 < 0.125. Empirically, its value can be set to 0.25 for a faster convergence.

e )\ is the attachment parameter. This is the most relevant parameter, which determines the
smoothness of the output. The smaller this parameter is, the smoother the solutions we obtain.
It depends on the range of motions of the images, so its value should be adapted to each image
sequence.

e 0 is the tightness parameter. It serves as a link between the attachment and the regularization
terms. In theory, it should have a small value in order to maintain both parts in correspondence.
The method is stable for a large range of values of this parameter.

e ¢ is the stopping criterion threshold used in the numerical scheme, which is a trade-off between
precision and running time. A small value will yield more accurate solutions at the expense of
a slower convergence.



e 7 is the downsampling factor. It is used to downscale the original images in order to create the
pyramidal structure. Its value must be in the interval (0, 1).

® Ncaes 18 used to create the pyramid of images. If the flow field is very small (about one pixel),
it can be set to 1. Otherwise, it should be set so that (1/n)Y — 1 is larger than the expected
size of the largest displacement. See [3] for details on this and the n parameters.

® Nyarps represents the number of times that [;(x +u’) and VI;(x+ u") are computed per scale.
This is a parameter that assures the stability of the method. It also affects the running time,
so it is a compromise between speed and accuracy.

Table 1: Parameters of the method.

Parameter Description Default value
T time step 0.25
A data attachment weight 0.15
0 tightness 0.3
€ stopping threshold 0.01
n zoom factor 0.5
Nycales number of scales 5
Nuwarps number of warps 5

5 Examples

Figures 2 and 3 show the optical flows for the Ettlinger-Tor and the Rheinhafen sequences, re-
spectively. These sequences can be found at http://www.ira.uka.de/image_sequences/. The results
obtained are similar to the results in [6]. In these examples we have used the following parameters:
7=0.25, 6=0.5, n = 0.5, £=0.01, 5 scales and 5 warpings. The algorithm is executed for three values
of \.

Figure 1: Color scheme used to represent the orientation and magnitude of optical flows.

The method detects the displacement of the objects in the Ettlinger-Tor traffic scene. It also
detects a regular background motion maybe due to a small displacement of the camera and the
effect of noise. For small values of A (A=0.03), the solution is smoother and the optical flow is
underestimated at the cars and the bus. Note that the method does not estimate the correct flow
for the car next to the bus. When \ is big, the attachment term becomes more important and the
method is more sensitive to the influence of noise, resulting in unstable flow fields.

The results for the Rheinhafen sequence are similar: the method detects the movement of the
cars and a small background shift. It also detects the motion of the shadow behind the truck. When
A is smaller, the flow fields are smoother and the effect of the shadow is spread.



A =0.03

Figure 2: Ettlinger-Tor sequence.

Ettlinger-Tor A=0.2 A=0.03 A=1.0

Figure 3: Rheinhafen sequence.

5.1 Yosemite Sequence

In this example (see figure 4) we analyze the behavior for the the Yosemite sequences, both with and
without clouds. The flow is estimated between frames 8 and 9, as in [6]. The parameters used for
the sequence without clouds are 7=0.25, A=0.11, #=0.45, n = 0.5, €=0.01, 5 scales and 5 warpings.
For the sequence with clouds the set of parameters are the same except for A=0.025 and 6 = 0.6.

The experiments in this section have been carried out in an Intel Core2 CPU at 2,4 GHz with
2,00 GB of RAM. The source code uses OpenMP directives to parallelize several loops, but in the
following examples, the running times are calculated for one processor only.

In table 2, we show the Average End-point (EPE) and Angular (AAE) errors. The results are
slightly better than in [6]. Note that our implementation uses several warpings per scale and a
different stopping criterion, which depends on the convergence rate between intermediate solutions.
The formulas used to calculate the EPE and AAE are:

N
1 2 2
EPE =~ > \/ (urg — uf)” + (uzi — ud’)”, (18)
i=1
N gt gt
1 Uy U7 ; + U2,iUs ;
AAFE = N Zarecos L 21 ) (19)
i1 \/u%Z + u%z + 1\/ui.;1t + ugzgt +1

with u9 = (uf’,u3') the ground truth solution.

Table 2: EPE and AAE for the Yosemite test sequences.
Errors EPE AAE Running time
Yosemite 0.095 pixels 2.046° 2.112s
Yosemite with Clouds | 0.251 pixels 4.568° 3.208s




Figure 4: Yosemite and Yosemite with Clouds sequences.

The running time may be further reduced if € is increased and/or the number of warpings is
decreased. In [6], the implementation and experiments were carried out with only one warping per
scale.

In figure 5 we observe the evolution of EPE and AAE with respect to 6, given several fixed values
for \. We observe that the errors decrease rapidly and then slowly increase. Note that, in order to
appreciate the evolution of the error, the graphics are in logarithmic scale. From these graphics we
observe that a value of # = 0.3 is a good choice for several values of .

Average End-point Error Average Angular Error

A=01 ——
A=.05

Average EPE
Average AAE

1 1 L
0.01 0.1 1 10 100
]

Figure 5: Yosemite and Yosemite with Clouds sequences.

When @ is very large, the importance of the coupling term, % lu — V|2, fades away and there is no
effective transfer of information between u and v. When 6 is very small, the coupling term outweighs
the data and regularization terms at each iteration. Thus, there is too much transfer of information
in the iterations and the solution is given by u = v. In either case (§ — 0 or § — o), the method

provides bad results. In practice, there is a wide range of 6 values for which the result is reasonable
(e.g., between 0.1 and 100).



Figure 6 shows the same error graphics changing the roles of A and 6. A small value of \ creates
very smooth flow fields since it increases the weight of the regularization. A larger value increases the
dependency on the attachment term and the solutions become less regular. \ has a greater influence
on the results and we observe that the solutions for A < 0.2 are more accurate.

Average End-point Error Average Angular Error

55

'5=.01 - '6=01

6=.05 ——
6=.10
6=.50
6=1.00

Average EPE
Average AAE

Figure 6: Yosemite and Yosemite with Clouds sequences.

5.2 Middlebury database

This section shows several tests with the sequences in the Middlebury benchmark database®. This
database contains two types of data: those for which the ground truth are made public (called " Test
sequences”), and those for which the ground truth are not public (”Evaluation sequences”). The
former are used for testing purposes and finding the appropriate parameters of the method, and the
latter are used to develop a ranking on the web page.

5.2.1 Test sequences

For the test sequences, we have run the algorithm with the same parameter set: 7=0.25, A\=0.15,
0=0.3, n = 0.5, e=0.01, 6 scales and 5 warpings. We also compute the optical flows adapting the
values of A\,  and the number of scales, in order to find a better result.

Figure 7 shows the 10th frame of the sequence, the ground truth, the solution with fixed param-
eters and the best solution found. These sequences are composed of more than two frames, but the
ground truth is only available for the 10th frame. Thus, the estimated optical flow is between frames
10 and 11.

In table 3 we show the EPE and AAE for the Middlebury test sequences, when fixed parameters
are used, which corresponds to the optical flows in the third column. In the fourth column of the
figure, we show the best optical flows found and the parameters used. Table 4 shows the EPE and
AAE for these experiments. In some cases, e.g. Urban3 and Venus, the improvements in accuracy
are important.

As in the previous section, we show the evolution of the EPE and AAE for A and 6. In this case,
we have used the RubberWhale sequence, which is a real video sequence with ground truth. In figure
8, we observe the evolution of EPE and AAE with respect to 6 given several fixed values for \. We
observe again that the error evolution in @ is very stable. As it happened for the Yosemite sequence,
values of 6 around 0.3 seem to provide the best results. Figure 9 shows the same error graphics for
A and several fixed values of 6.

2http://http://vision.middlebury.edu/flow
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Frame 10 Ground truth Optical flow Best optical flow

Dimetrodon
A=0.3
#=0.3
5 scales

Grove2
A=0.3
#=0.3
6 scales

Grove3
A=0.5
=04
4 scales

. . ‘h |

Hydrangea
A=0.1
0 =0.8
4 scales

RubberWhale
A=0.4
=04
4 scales

Urban2
A=0.5
0=0.3
6 scales

Urban3
A=0.9
0 =0.7
5 scales

Venus

A=04
0=0.6
4 scales

P 1
N
AN

Figure 7: Results for the Middlebury test sequences.
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Table 3: EPE and AAE for the Middlebury test sequences, using default parameters.

Errors | Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus
EPE 0.162p 0.156p 0.721p 0.258p 0.215p 0.382p 0.711p 0.394p
AAE 2.888° 2.311°  6.590° 2.814° 6.865° 3.016°  6.631° 6.831°

Table 4: EPE and AAE for the Middlebury test sequences, using the best parameters.

Errors | Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus

EPE 0.152p 0.153p 0.673p 0.244p 0.199p 0.360p  0.535p 0.296p

AAE 2.772° 2.261°  6.359° 2.637° 6.428° 2.671°  4.183°  4.376°
Average End-point Error Average Angular Error

09 -

08 -

07

Average EPE

0.4

03

02

0.1

09 -

08 -

07 -

Average EPE

o

L L
0 0.2 0.4 0.6 0.8 1 12 1.4 o] 0.2 0.4 0.6 08 1 12 1.4

03

02

0.1

06

05 R

A=.01
A=.05
A=.10
A=30 ——
A=1.00

Average AAE

N

L L L
01 1 10 100
[E] ¢]

Figure 8: Middlebury evaluation sequences.
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'6=01
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35

30

25

Average AAE

20

A A

Figure 9: Middlebury evaluation sequences.
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In the case of RubberWhale, the best value for A is around 0.3. In our experience, a value of
A = 0.15 yields good results for all the sequences.

5.2.2 Evaluation sequences

Finally, we show several examples using the evaluation sequences in figure 10. We have used the
same parameter set as for the test sequences: 7=0.25, A=0.15, 6=0.3, n = 0.5, €=0.01, 6 scales and
5 warpings.

' %Svequence Optical flow Sequence Optical flow

N

Figure 10: Middlebury evaluation sequences.
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