Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/11276
Título: Optical flow estimation with consistent spatio-temporal coherence models
Autores/as: Sánchez, Javier 
Salgado de la Nuez, Agustín Javier 
Monzón, Nelson 
Clasificación UNESCO: 220990 Tratamiento digital. Imágenes
Palabras clave: Optical flow
Variational methods
PDE
Temporal coherence
Fecha de publicación: 2013
Conferencia: 8th International Conference on Computer Vision Theory and Applications, VISAPP 2013 
Resumen: In this work we propose a new variational model for the consistent estimation of motion fields. The aim of this work is to develop appropriate spatio-temporal coherence models. In this sense, we propose two main contributions: a nonlinear flow constancy assumption, similar in spirit to the nonlinear brightness constancy assumption, which conveniently relates flow fields at different time instants; and a nonlinear temporal regularization scheme, which complements the spatial regularization and can cope with piecewise continuous motion fields. These contributions pose a congruent variational model since all the energy terms, except the spatial regularization, are based on nonlinear warpings of the flow field. This model is more general than its spatial counterpart, provides more accurate solutions and preserves the continuity of optical flows in time. In the experimental results, we show that the method attains better results and, in particular, it considerably improves the accuracy in the presence of large displacements.
URI: http://hdl.handle.net/10553/11276
ISBN: 9789898565471
Fuente: VISAPP 2013 - Proceedings of the International Conference on Computer Vision Theory and Applications,v. 2, p. 366-369
Derechos: by-nc-nd
Colección:Actas de congresos
miniatura
Adobe PDF (163,21 kB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.