Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112618
DC FieldValueLanguage
dc.contributor.authorMezina, Aen_US
dc.contributor.authorBurget, Ren_US
dc.contributor.authorTravieso González, Carlos Manuelen_US
dc.date.accessioned2021-11-11T12:51:13Z-
dc.date.available2021-11-11T12:51:13Z-
dc.date.issued2021en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10553/112618-
dc.description.abstractAnomaly detection in network traffic is one of the key techniques to ensure security in future networks. Today, the importance of this topic is even higher, since the network traffic is growing and there is a need to have smart algorithms, which can automatically adapt to new network conditions, detect threats and recognize the type of the possible network attack. Nowadays, there are a lot of different approaches, some of them have reached relatively sufficient accuracy. However, the majority of works are being tested on old datasets, which do not reflect current network conditions and it leads to overfitted results. This is caused by high redundancy of the data and because they fail to reflect the performance of the latest methods in the real-world anomaly detection applications. In this work, we applied a couple of new methods based on convolutional neural networks: U-Net based and Temporal convolutional network based for network attack classification. We trained and evaluated methods on the old dataset KDD99 and the modern large-scale one CSE-CIC-IDS2018. According to results, Temporal convolutional network with LSTM has achieved accuracy 92% and 97% on the KDD99 and the CSE-CIC-IDS2018 respectively, the U-Net model has accuracy 93% and 94% on the KDD99 and the CSE-CIC-IDS2018 respectively. Additionally, we utilized the focal loss function in the Temporal convolutional network with Long Short-Term Memory model, which has positive effect on class imbalance in time-series data. We showed, that the Temporal convolutional network in combination with Long Short-Term Memory network and U-Net model can give higher accuracy compared to other network architectures for network traffic classification. In this work we also proved, that methods trained on the old dataset can easily overfit during training and achieve relatively good results on the testing set, but at the same time, these methods are not so successful on more complex and actual data.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Accessen_US
dc.sourceIEEE Access [ISSN 2169-3536], n. 9, p. 143608 - 143622, (Octubre 2021)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherAnomaly detectionen_US
dc.subject.otherTask analysisen_US
dc.subject.otherTrainingen_US
dc.subject.otherIntrusion detectionen_US
dc.subject.otherFeature extractionen_US
dc.subject.otherData modelsen_US
dc.subject.otherTestingen_US
dc.subject.otherConvolutional neural networken_US
dc.subject.otherDeep learningen_US
dc.subject.otherIntrusion detection systemen_US
dc.subject.otherMulti-class classificationen_US
dc.subject.otherSecurityen_US
dc.subject.otherImbalanced dataseten_US
dc.titleNetwork Anomaly Detection With Temporal Convolutional Network and U-Net Modelen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typearticleen_US
dc.identifier.doi10.1109/ACCESS.2021.3121998en_US
dc.identifier.isiWOS:000711702900001-
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,927
dc.description.jcr3,476
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,4
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameTravieso González, Carlos Manuel-
Appears in Collections:Artículos
Adobe PDF (1,9 MB)
Show simple item record

WEB OF SCIENCETM
Citations

19
checked on Mar 30, 2025

Page view(s)

81
checked on Jul 6, 2024

Download(s)

115
checked on Jul 6, 2024

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.