Identificador persistente para citar o vincular este elemento:
http://hdl.handle.net/10553/112534
Título: | A text-mining based analysis of 100,000 tumours affecting dogs and cats in the United Kingdom | Autores/as: | Rodríguez Torres, José Killick, David R. Ressel, Lorenzo Espinosa De Los Monteros Y Zayas, Antonio Santana Del Pino, Ángelo Beck, Samuel Cian, Francesco McKay, Jenny S. Noble, P. J. Pinchbeck, Gina L. Singleton, David A. Radford, Alan D. |
Clasificación UNESCO: | 310904 Medicina interna 320713 Oncología |
Palabras clave: | Cancer epidemiology Epidemiology |
Fecha de publicación: | 2021 | Publicación seriada: | Scientific data | Resumen: | Cancer is a major reason for veterinary consultation, especially in companion animals. Cancer surveillance plays a key role in prevention but opportunities for such surveillance in companion animals are limited by the lack of suitable veterinary population health infrastructures. In this paper we describe a pathology-based animal tumour registry (PTR) developed within the Small Animal Veterinary Surveillance Network (SAVSNET) built from electronic pathology records (EPR) submitted to this network. From an original collection of 180232 free text (non-structured) EPRs reported between April 2018 and June 2019, we used specific text-mining methodologies to identify 109895 neoplasias. These data were normalized to describe both the tumour (type and location) and the animal (breed, neutering status and veterinary practice postcode). The resulting PTR, the largest of its kind for companion animals to date, is an important research resource being able to facilitate a wide array of research in areas including surveillance, clinical decision making and comparative cancer biology. | URI: | http://hdl.handle.net/10553/112534 | ISSN: | E2052-4463 | DOI: | 10.1038/s41597-021-01039-x | Fuente: | Scientific Data [EISSN 2052-4463], v. 8 (1), 266, (Diciembre 2021) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.