Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/112259
Título: Genetic parameter estimations of new traits of morphological quality on gilthead seabream (Sparus aurata) by using IMAFISH_ML software
Autores/as: León Bernabeu, Sergio 
Shin, Hyun Suk 
Lorenzo Felipe, Álvaro 
Pérez García, Cathaysa 
Berbel, Concepción
Said Elalfy, Islam 
Armero, Eva
Pérez-Sánchez, Jaume
Arizcun, Marta
Zamorano, Maria Jesús 
Manchado, Manuel
Afonso López, Juan Manuel 
Clasificación UNESCO: 310502 Piscicultura
Palabras clave: Genetic Correlation
Gilthead Seabream
Heritability
IMAFISH_ML
KET, et al.
Fecha de publicación: 2021
Proyectos: Mejora de la Competitividad Del Sector de la Dorada A Través de la Selección Genética (Progensa-Iii) 
Publicación seriada: Aquaculture Reports 
Resumen: In this study, a total of 18 novel productive traits, three related to carcass [cNiT] and fifteen related to morphometric [mNiT]), were measured in gilthead seabream (Sparus aurata) using Non-invasive Technologies (NiT) as implemented in IMAFISH_ML (MatLab script). Their potential to be used in industrial breeding programs were evaluated in 2348 offspring reared under different production systems (estuarine ponds, oceanic cage, inland tank) at harvest. All animals were photographed, and digitally measured and main genetic parameters were estimated. Heritability for growth traits was medium (0.25–0.37) whereas for NiT traits medium-high (0.24–0.61). In general, genetic correlations between mNiT, cNiT and growth and traits were high and positive. Image analysis artifacts such as fin unfold or shades, that may interfere in the precision of some digital measurements, were discarded as a major bias factor since heritability of NiT traits after correcting them were no significantly different from original ones. Indirect selection of growth traits through NiT traits produced a better predicted response than directly measuring Body Weight (13–23%), demonstrating that this methodological approach is highly cost-effective in terms of accuracy and data processing time.
URI: http://hdl.handle.net/10553/112259
ISSN: 2352-5134
DOI: 10.1016/j.aqrep.2021.100883
Fuente: Aquaculture Reports [EISSN 2352-5134], v. 21, 100883, (Noviembre 2021)
Colección:Artículos
Adobe PDF (2,51 MB)
Vista completa

Citas SCOPUSTM   

14
actualizado el 24-nov-2024

Citas de WEB OF SCIENCETM
Citations

14
actualizado el 24-nov-2024

Visitas

97
actualizado el 30-mar-2024

Descargas

88
actualizado el 30-mar-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.