Please use this identifier to cite or link to this item:
Title: Proposal for modelling and numerical simulation with SCILAB for learning the continuous and discontinuous dynamics of biological and anaerobic digesters
Authors: León-Zerpa, Federico 
Ramos-Martín, Alejandro 
Brito Espino, Saulo Manuel 
Mendieta-Pino, Carlos 
García Ramírez, Tania
UNESCO Clasification: 3308 Ingeniería y tecnología del medio ambiente
Keywords: Biological kinetics
Numerical method
Issue Date: 2021
Project: Mitigación del cambio climático a través de la innovación en el ciclo del agua mediante tecnologías bajas en carbono 
Journal: Desalination and Water Treatment 
Abstract: Anaerobic digestion has been established as a sat- isfactory process for the stabilisation of effluent with a high organic load and it is important to know the differ- ent factors that affect the design of the biological reactor. Anaerobic treatment systems are biological systems that operate in the absence of oxygen and are very suitable for the treatment of highly biodegradable waste. Therefore, it is of interest to design learning strategies, based on infor- mation and communication technologies (ICTs), to help stu- dents in relevant Bachelor’s and Master’ degree courses and provide them with skills in environmental technologies to learn and understand the evolution of the relevant variables in the operation of anaerobic digesters, both continuous and discontinuous. Such learning strategies can be based on the use of experimental and laboratory artefacts or designs, as well as virtual implementations by means of simulations, under easily modifiable environments, designed for the study and analysis of the issues of concern. The educa- tional proposal related to artefacts is based on psycholog- ical learning theories developed in different works [1–4], while the second proposal is based on simulations and is set out in the following references [5–9]. In this way, it is possible to achieve appropriate experimental environments in line with a constructivist approach to learning through active techniques [1,10]. The main objective of this article is a proposal of modelling and numerical simulation with SCILAB, with a view to learning the continuous and discontinuous dynamics of anaerobic biological digesters.
ISSN: 1944-3994
DOI: 10.5004/dwt.2021.27535
Source: Desalination and Water Treatment [ISSN 1944-3994], v. 234 , p. 15–21, (Septiembre 2021)
Appears in Collections:Artículos
Adobe PDF (582,52 kB)
Show full item record

Google ScholarTM




Export metadata

Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.